

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

THE CIRCULAR PIPELINE:
 ACHIEVING HIGHER THROUGHPUT IN THE SEARCH

FOR BENT FUNCTIONS

by

Christopher D. Johnson

September 2010

 Thesis Co-Advisors: Jon T. Butler
 Pantelimon Stanica

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
The Circular Pipeline: Achieving Higher Throughput in the Search for Bent
Functions
6. AUTHOR(S) Christopher D. Johnson

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A__________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
 A

13. ABSTRACT (maximum 200 words)
For the first time, the circular pipeline as a means to significantly improve the throughput achieved in the search for
bent functions is presented in this thesis. Linear cryptanalysis attack is a threat to modern symmetric encryption
systems. A good defense is the use of a primitive based on Boolean functions having the highest nonlinearity
possible—a bent function. Bent functions are extremely rare and, therefore, difficult to find. The implementation of
a sieve on a field programmable gate array (FPGA) provides a high throughput (one function per clock) approach to
searching for bent functions. With a clock frequency of 100 MHz, throughput is 100,000,000 functions per second.
The circular pipeline as a way to achieve an even higher throughput is examined in this thesis. The theoretical
maximum speedup is 2n, where n is the number of variables. The exact achievable speedup has been unknown until
now. It is shown that a speedup of 55 is achieved at n = 6 with the design proposed in this thesis, which is 86% of the
theoretical maximum.

15. NUMBER OF
PAGES

116

14. SUBJECT TERMS Circular Pipeline, Boolean Bent Functions, Hardware Complexity, Circuit
Complexity, Nonlinearity, Hamming Distance, Cryptography

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

THE CIRCULAR PIPELINE:
ACHIEVING HIGHER THROUGHPUT IN THE SEARCH FOR BENT

FUNCTIONS

Christopher D. Johnson
Lieutenant, United States Navy

B.S., University of Michigan, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2010

Author: Christopher D. Johnson

Approved by: Jon T. Butler
Thesis Co-Advisor

Pantelimon Stanica
Thesis Co-Advisor

Clark Robertson
Chairman, Department of Electrical & Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

For the first time, the circular pipeline as a means to significantly improve the throughput

achieved in the search for bent functions is presented in this thesis. Linear cryptanalysis

attack is a threat to modern symmetric encryption systems. A good defense is the use of

a primitive based on Boolean functions having the highest nonlinearity possible—a bent

function. Bent functions are extremely rare and, therefore, difficult to find. The

implementation of a sieve on a field programmable gate array (FPGA) provides a high

throughput (one function per clock) approach to searching for bent functions. With a

clock frequency of 100 MHz, throughput is 100,000,000 functions per second. The

circular pipeline as a way to achieve an even higher throughput is examined in this thesis.

The theoretical maximum speedup is 2n, where n is the number of variables. The exact

achievable speedup has been unknown until now. It is shown that a speedup of 55 is

achieved at n = 6 with the design proposed in this thesis, which is 86% of the theoretical

maximum.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. LINEAR CRYPTANALYSIS...1
B. ENUMERATION OF BENT BOOLEAN FUNCTIONS.............................1
C. SPEEDUP USING A CIRCULAR PIPELINE ...1
D. THESIS GOALS ..2
E. THESIS ORGANIZATION..3

II. BENT FUNCTION DISCOVERY USING SIEVE...5
A. FUNCTIONS..5

1. Definitions...5
a. Boolean Functions..5
b. Linear Functions...5
c. Affine functions ..5
d. Nonlinearity (NLf)...5
e. Bent Weight ...5
f. Bent Functions..6
g. Throughput (T) ...6

B. PARALLEL SIEVE ARCHITECTURE ...6
1. XOR Operation ..7
2. Ones Count ...7
3. Minimum ..8

C. ADVANTAGES..9
D. DISADVANTAGES...9

III. CIRCULAR PIPELINE SIEVE ARCHITECTURE ...11
A. RESERVOIR..11
B. CIRCULAR PIPELINE ..15

1. Data Flow and Control Logic Complexity Comparison.................16
C. FUNCTION GENERATOR ...18

1. With Reservoir ...18
2. Without Reservoir..19

D. PERSISTENCE..20
1. Worst-Case Scenarios..24

a. With Reservoir...24
b. Without Reservoir ...24

E. SUMMARY ..25

IV. IMPLEMENTATION ...27
A. VERILOG IMPLEMENTATION ...27

1. Reservoir...27
a. Priority Encoders ..27
b. Adders ..28
c. Registers ..29

 viii

2. Circular Pipeline ..29
B. VERILOG DESIGN DEVELOPMENT AND TESTING..........................29
C. SRC-6 IMPLEMENTATION...31

1. Macro Characteristics ...32
2. Streaming Output ..32
3. CPU ...33
4. Subroutine and Macro Call ..33
5. Timing ...33
6. FPGA Resources ..33

D. SUMMARY ..34

V. RESULTS ...35
A. SPEEDUP ...35
B. RESOURCES ...38
C. RESERVOIR TRADEOFF...39
D. SUMMARY ..41

VI. CONCLUSIONS AND RECOMMENDATIONS...43
A. CONCLUSION ..43
B. RECOMMENDATIONS FOR FURTHER RESEARCH43

1. Multiple Output Stages..43
2. Pipelined Reservoir..44
3. Multiple FPGAs ...44
4. Function Generators..44

APPENDIX. PROGRAMMING CODE...45
A. VERILOG...45

1. Circular Pipeline With Independent Function Generators45
2. Circular Pipeline With Reservoir...65

B. SRC-6 IMPLEMENTATION FILES ..84
1. main.c ..84
2. subr.mc..86
3. makefile...87
4. info...90
5. blk.v ...91

LIST OF REFERENCES..93

INITIAL DISTRIBUTION LIST ...95

 ix

LIST OF FIGURES

Figure 1. Sieve Architecture for Bent Function Discovery. From [5]7
Figure 2. Bitwise XOR Architecture. From [5]...7
Figure 3. Ones Count Architecture. From [5] ...8
Figure 4. Minimum Module’s Architecture. From [5]..8
Figure 5. Reservoir Architecture. ..12
Figure 6. Linear Pipeline Information Flow..16
Figure 7. Circular Pipeline Information Flow. ..17
Figure 8. Circular Pipeline Data with One Stage Output. ...17
Figure 9. Synplify Pro RTL View of a Circular Pipeline Stage. n = 4.30
Figure 10. Synplify Pro RTL View of the Bent Weight Tester Within a Stage. n = 4.30
Figure 11. Synplify Pro RTL View of a One’s Counter Within a Bent Weight Tester.

n = 4. ..30
Figure 12. ModelSim Post-map Simulation Result Excerpt. ..31
Figure 13. Realized Throughput..37
Figure 14. Throughput Normalized to 2n. ...38
Figure 15. Relative Completion Times of the IFG..41

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Reservoir Complexity. ...15
Table 2. Throughput and Average Persistence. From [4] ..21
Table 3. Example Computation of Throughput for n = 4. From [4]22
Table 4. Realized Speedup...36
Table 5. Resources Consumed Summary. ...39
Table 6. Circular Pipeline With and Without Reservoir (Res) Comparison..................40

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

DES Data Encryption Standard

FPGA Field Programmable Gate Array

FUT Function Under Test

IFG Independent Function Generators

LUT Lookup Table

MUX Multiplexor

OBM On Board Memory

RTL Register Transfer Level

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Computer hardware architecture that speeds up the process of sieving through a pool of

functions in search of a set of characteristics is presented in this thesis. This

architecture—the circular pipeline—is motivated by the search for the most nonlinear

functions, known as bent functions, due to their usefulness in cryptographic applications.

Bent functions provide for a defense against linear cryptanalysis attack. A linear attack

attempts to break the cipher key using a series of linear approximations for the key. If

successful, linear characteristics of the cipher key are exploited and the encryption is

broken. Bent functions are the least linear of all functions, making them most resistant to

linear cryptanalysis attack.

No analytic method is known to solve for bent functions, so large pools of

candidate functions must be tested in order to find bent functions. Bent functions are

well defined and testing is straightforward. However, the pools of candidate functions

are so large that modern processing power is insufficient to exhaustively sieve through all

possibilities. Utilizing the parallelism afforded by reconfigurable computing on the SRC-

6, we achieved a speedup of over 60,000 times over a conventional processor at the

Naval Postgraduate School. The speedup achieved through parallel processing is

improved through more efficient use of the parallel stages in the circular pipeline design.

The conventional parallel design tests a single function per clock period. To

discover a bent function, it must be tested against all linear functions; therefore, the

conventional design contains tests for all linear functions in parallel. Each test consists of

calculating the nonlinearity of the function under test and determining if it is a bent

weight. A bent weight is easily defined, and this part of the test is completed with two

comparators, one for each of the two bent weights. The nonlinearity is calculated with a

bitwise exclusive-OR followed by a tree of adders that sum the resulting number of ones.

The circular pipeline uses the same test modules used in the conventional design,

but controls the flow of functions through the stages differently. Rather than applying a

single function to all stages simultaneously for testing, a distinct function is applied to

 xvi

each test module, which is a stage of the circular pipeline. If a bent weight is found, the

function is advanced to the following stage, where another test is applied. If a bent

weight is not found, the function is discarded and the following stage accepts a new

function from the function generator. A function is continually passed to a subsequent

stage as long as it passes tests. If a function passes all tests, it is bent. As soon as a

function fails a single test, it is ejected, making room for a new function to be inserted to

the pipeline and tested. The result is more efficient use of the stages compared to the

conventional design that performs simultaneous tests.

Exactly what speedup is achievable is related directly to how much more

efficiently the stages are utilized. This efficiency, in turn, is directly related to how many

stages functions tend to pass before failing (and being ejected from the pipeline). Due to

the rarity of bent functions, a function selected at random is more likely to fail an

individual stage test than to pass. Therefore, a great deal of efficiency, realized as

throughput and ultimately speedup in total computation time, is gained with circular

pipeline architecture.

The circular pipeline requires additional logic to control the additional complexity

of information flow through the stages. Conventional speedup gained through

parallelism is done so at a cost of doubling logic resources to double throughput.

Therefore, the circular pipeline must have a better speedup to increased-logic ratio to be a

technological improvement.

Two primary design variations were developed and tested. The first uses a

reservoir queuing system to equitably distribute functions from a single function

generator to all stages. This design resulted in the greatest speedup, but logic resource

consumption was too great to make it practical and could only be realized for very simple

cases. The second design implemented independent function generators, one for each

stage, in order to eliminate the reservoir and providing an economical speedup. A

contribution of this thesis is to demonstrate a speedup to logic-resources-demand ratio of

55:2.3. Conventional parallelism yields a ratio of 1:1. Furthermore, the trend of this

ratio improves as complexity (the number of variables) of the circular pipeline increases.

 xvii

ACKNOWLEDGMENTS

I offer endless appreciation for having been born into this country, which has

afforded the endless opportunities that have brought me here. I bear in mind those

hardworking individuals around the globe who are not provided the same opportunities.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. LINEAR CRYPTANALYSIS

Matsui [1] introduced the linear cryptanalysis method that succeeded in breaking

the Data Encryption Standard (DES) block cipher. DES was endorsed by the United

States Bureau of Standards in 1976 and was ubiquitous in data encryption applications

into the 2000s. Matsui’s linear cryptanalysis method uses a series of linear

approximations to decipher the target message. The use of a highly nonlinear Boolean

function in the encryption process is an effective defense against such a linear

cryptanalysis attack. Bent functions are highly nonlinear, and therefore useful in securely

encrypting data.

B. ENUMERATION OF BENT BOOLEAN FUNCTIONS

While the precise definition of a bent function is straightforward, generating a

bent function is not. Currently, our approach to enumerating all n-variable bent functions

is to exhaustively test a large pool of candidate n-variable functions using a sieve

technique. It has been demonstrated that a reconfigurable computer is an efficient way to

test functions for bentness [2]. Until now, the architecture implemented on the SRC-6 at

the Naval Postgraduate School tests a single function in truth table form simultaneously

against all affine functions (or a subset thereof determined to be adequate). The

parallelism afforded by the reconfigurable computer to perform simultaneous tests

provides a speedup factor of greater than 60,000 over a conventional processor [2].

C. SPEEDUP USING A CIRCULAR PIPELINE

An inherent inefficiency with the current architecture is that a majority of the

simultaneously performed tests reconfirm the same conclusion—that the function under

test (FUT) is not bent. This is a result of the rare nature of bent functions. Each of the

parallel tests is performed with a distance calculator that finds the distance between an

affine function and the FUT. All tests must be applied and passed to declare that a

 2

function is bent. That is, only one test needs to fail to determine a function is not bent.

In the majority of cases, a function fails many tests. We seek a method in which a

function is subject to individual tests sequentially and is immediately ejected when it fails

one test. In this way, the test units are more efficiently used and the throughput is

greater. FUTs that pass are forwarded to subsequent distance calculator stages until they

either fail their first test or pass all tests. In this way, the information obtained from

every test conducted is an essential operation. No resources are wasted performing

unnecessary tests [4].

With the circular pipeline architecture, the maximum throughput possible is the

number of stages S. This is achieved when all functions fail. The average will be less.

This compares to a fixed throughput of 1 function per cycle with the conventional sieve

architecture [4].

Although the number of distance calculators (each belonging to a stage in the

circular pipeline) remain constant, an increase in the pipeline’s control unit logic is

expected to be required for a circular architecture. This is due to the increase of possible

routes for data to flow into and out of each pipeline stage. Each stage of the conventional

architecture always accepts a new function from the function generator and always passes

its result along. A circular pipeline stage may or may not accept a new function from the

function generator, may or may not accept a function from the preceding stage, and may

or may not pass a function it tests to the subsequent stage for further testing.

Discovering the exact tradeoff between speedup and additional logic resource

requirements of the circular pipeline architecture is a key area of interest.

D. THESIS GOALS

This thesis investigates the amount of speedup realizable with circular pipeline

architecture implemented on the SRC-6. Insight into this will guide further advances in

bent function discovery using the sieve technique along with possibly providing useful

data for high-speed calculation of other mathematical operations amenable to circular

pipeline architecture.

 3

E. THESIS ORGANIZATION

A basic overview of this thesis is presented in Chapter I. Background information

is presented in Chapter II. The design proposed by this thesis to attain calculation

speedup is detailed in Chapter III. Implementation issues are addressed in Chapter IV.

Results and analysis are presented in Chapter V. The thesis summary and suggestions for

future research in this area, specifically potential improvements to the proposed circular

pipeline architecture, are presented in Chapter VI.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BENT FUNCTION DISCOVERY USING SIEVE

A. FUNCTIONS

1. Definitions

a. Boolean Functions

A Boolean function f on n variables is a map from the n-dimensional

vector space Vn = F2 to F2, the two-element field. For a function f, let f0 = f(0,0,...,0), f1 =

f(0,0,...,1), ..., and
2 1nf
 = f(1,1,...,1). TT = (f0 f1 ... 2 1nf


) is the truth table representation

of f [2].

b. Linear Functions

A linear function is the constant zero function or the exclusive-OR (XOR)

of one or more variables [2]. There are 2n linear functions.

c. Affine functions

An affine function is a linear function or the complement of a linear

function [2]. There are 2n+1 affine functions.

d. Nonlinearity (NLf)

The nonlinearity NLf of a function f is the minimum Hamming distance

between f and an affine function, where the Hamming distance between two functions is

the number of places where their truth table representations differ [2].

e. Bent Weight

A bent weight is defined to be a nonlinearity of
-1

2 12 2
nn  [1]. If a function

is found to have a bent weight for a linear function, it will have also have a bent weight

 6

for that linear function’s complement. Therefore, it is sufficient to test only against all

linear functions [2].

f. Bent Functions

A bent function has a maximum nonlinearity among n-variable functions,

where n is even. A bent function will have bent weights for all 2n linear functions (and

implicitly, all 2n+1 affine functions) [2].

It follows that a small portion of the 22
n

functions of an n-variable function are

bent. For n = 4, 896
65,536 = 1.3% of the 4-variable functions are bent. This percentage

decreases as n increases. For example, n = 6 has a bent function ratio of

5,425,430,528/
622 = 2.94x10−8% [3].

g. Throughput (T)

Throughput T is the rate at which functions are processed, given in units of

functions per clock.

B. PARALLEL SIEVE ARCHITECTURE

An approach to discover all bent functions for n-variable functions is to

enumerate all possible truth tables sequentially and apply each to all affine functions

simultaneously. As depicted in Figure 1, the FUT is bitwise XOR’d with each affine

function, then ‘Ones Count’ logic determines the number of resulting ones (the Hamming

distance), followed by a ‘Minimum’ circuit that finds the lowest value for all the ‘Ones

Count’ inputs. The output of ‘Minimum’ is the nonlinearly of the function. Together,

these modules are distance calculators, providing the distance between two inputs—an

affine function and a FUT. This process is pipelined to achieve a clock rate of 100MHz

with throughput of one function per clock on the SRC-6. Each module of the distance

calculator will now be discussed in further detail.

 7

Figure 1. Sieve Architecture for Bent Function Discovery. From [5]

1. XOR Operation

The bitwise XOR operation of bus width 2n is constructed of 2n/2 parallel 2-input

XOR gate. This is depicted in Figure 2.

Figure 2. Bitwise XOR Architecture. From [5]

2. Ones Count

The Ones Count circuit is constructed as a tree beginning with 2
4

n

 4-input adders

and ending with a 2n-wide adder with an n+1-wide output that is the Hamming distance

to the affine function. This design is illustrated by Figure 3.

 8

Figure 3. Ones Count Architecture. From [5]

3. Minimum

The minimum circuitry is also constructed as a tree, with each building block

receiving two n+1-wide inputs (the results from the Ones Counts modules) and producing

the n+1-wide nonlinearity in binary. This architecture is depicted in Figure 4.

Figure 4. Minimum Module’s Architecture. From [5]

 9

C. ADVANTAGES

The principle advantage of this architecture is that a large number of operations

are performed in parallel that would otherwise have to be executed in serial on a

conventional CPU. For example, a bitwise XOR operation is required for each affine

function, which amounts to a total of 2n+1 operations, or more if the conventional

processor cannot accommodate a 2n-wide bitwise XOR. The ability to execute all of

these operations in parallel amounts to a significant time savings over conventional

processors for large n-variable functions [5].

D. DISADVANTAGES

The principle disadvantage of this parallel sieve technique is that, for any one

cycle, the distance calculators provide redundant information about each non-bent FUT,

which typically fail many of the parallel tests.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. CIRCULAR PIPELINE SIEVE ARCHITECTURE

An improvement in computational time to discover all bent functions for a given

n is sought by achieving greater utilization of the distance calculators. The sieve consists

of 2n stages that each computes the distance between f and one of the 2n linear functions.

Then, it determines if its distance is a bent weight 2n-1 ± 2n/2-1.

Persistence (Pi)

Persistence is the number of stages a function fi is subjected to before removal

from the circular pipeline. Pi is equal to the number of passed tests for bentness (one per

stage) plus one (for the stage that removes f). P is the average persistence over all

functions.

If a function fi is found to have a bent weight, its persistence Pi is incremented and

it is passed to the next stage. If f is found not to have a bent weight, it is ejected from the

circular pipeline and the following stage accepts a new function. In the case that fi is

bent, Pi will grow to 2n. Then, fi is removed from pipeline and stored [4].

The speedup of the circular pipeline depends on the throughput, which will be

1 ≤ T ≤ 2n. The lower bound occurs if all functions in the pipeline are bent, while the

upper bound occurs when none of the functions in the pipeline have a bent weight and are

therefore ejected after one cycle [4].

A. RESERVOIR

For each cycle, 2n functions must be made available to the circular pipeline in

case all previously tested functions were ejected. The sieve procedure begins with a

single function generator very similar to that used in the conventional design providing

these sets of functions. However, not all of these 2n functions will be accepted by the

circular pipeline because some functions in the circular pipeline will persist, blocking a

new input. To achieve exhaustive testing, a reservoir for these unaccepted functions must

 12

be provided so they may be inserted into the pipeline at a later time. Further, a

mechanism to provide the functions stored in the reservoir to the circular pipeline, vice a

new set from the function generator, must be incorporated.

The reservoir is shown in Figure 5. Functions enter through a multiplexor (MUX)

that is sourced with two complete sets of 2n functions one from the function generator

and the other from the reservoir. If a stage in the circular pipeline is available, a function

fi provided by the MUX is inserted. If not, the fi is routed to the lowest available of the

2n+1 − 1 registers, beginning with L0.

Figure 5 is an illustration of the reservoir for n = 2. The circular shape at the top

of Figure 5 is the circular pipeline with the 4 stages for n = 2. L0 through Q2 are the

2n+1−1 registers required to ensure registers are available for rejected functions in the

worst-case scenario. The blocks labeled I are the 2n functions applied by the MUX.

Figure 5. Reservoir Architecture.

 13

The purpose of the reservoir is to store functions rejected by the circular pipeline,

so they can be reinserted later. These temporarily stored functions must be queued such

that they can be presented to the circular pipeline as a complete set of 2n functions. A

major problem associated with queuing the functions to form a complete set is assuring

that no empty registers exist between occupied registers.

The top registers
0 though 2 1nQ


 are replicated for the purpose of illustration. It must

be known how many empty registers reside below each incoming function Ii (provided by

the MUX). Summing the number of L occupied registers with an adder chain is required

when the L registers are not all filled. The addition operation needed to sum all occupied

L registers is special in that if a stage is found to be occupied, all stages below it are

occupied as well. Therefore, a thermometer-type adder, or thermo adder, is used to

provide this sum.

Analysis of all possible cases revealed that when the L registers are completely

occupied, the same thermo adder simply needs to be applied to the Q registers. This is

because the Q registers will slide down to fill the P registers from the bottom up and the

incoming functions I will fill in atop these.

The sum produced by the thermo adder is the input to a chain of adders associated

with the incoming I functions. A 2n-bit signal inToPipe, from the circular pipeline, is

used in the same fashion as the occupied bits are used with the registers. An asserted

inToPipei indicates that the pipeline stage Qi requires Ii on the next clock; hence, Ii will

not be stored in the reservoir. If inToPipei is low, Ii will be routed into the reservoir. The

adder chain accounts for the presence of Ii in the reservoir, which is needed to determine

proper routing of other incoming I functions above Ii.

The lowest index I function rejected by the circular pipeline is routed to the

lowest indexed available register. The next lowest indexed I function rejected from the

circular pipeline is stored in the register directly above where the lowest indexed I

function is stored. With this behavior, for each function I to be routed correctly, the

number of occupied registers below is needed, to include any other lower indexed I

 14

functions that are being routed to the reservoir on the same clock. The adder chain,

applied to the occupied bits of the registers and the inToPipe bits of I, provides this

number and allows for proper routing.

When the top L register,
2 1nL


is filled, a select signal is asserted and the MUX

applies the set of 2n L functions from the reservoir. Functions in Q registers slide down

to the similarly indexed L register, ensuring the reservoir is filled from the bottom up.

When the MUX selects functions from the reservoir, the function generator must be

inhibited, which is controlled by the same line used as input to the OR gate that feeds the

MUX select. When the function generator has completed generating all functions, a done

signal is sent to the reservoir. This signal also feeds the OR gate leading to the MUX

select, which routes any remaining functions in the reservoir to the circular pipeline.

Despite being auxiliary, the reservoir is the most complex part of the circular

pipeline. An estimate the growth rate of reservoir complexity as a function of n is given

in Table 1. The number of connection paths and individual wires required (connections

multiplied by bus width) by the reservoir to accompany the circular pipeline for given n

are listed in Table 1. The minimum number of transfer paths occurs for I0, which has 2n

possible paths. There is no case for which I0 will be routed to any of the Q registers. I1

can be routed to any L register or Q0. I2 could be routed to any L register, Q0 or Q1. This

pattern continues until reaching 2n
I , which could be transferred to any of the registers.

This gives a maximum number of transfer paths of 2n+1 − 1.

The total number of transfer paths is given by

Max

Min

TransferPaths
+ 2n − 1. The 2n

− 1 term accounts for the paths for each Qi register to transfer to its corresponding Li

register. The total number of wires required is found by multiplying the total transfer

paths by bus width of f, which is 2n. Lastly, the growth rate column shows the growth

factor of the total number of required wires with respect to the previous row. Bearing in

mind that this table omits odd n, we deduce that the complexity of the reservoir grows by

approximately 8n. The circular pipeline is expected to grow at a rate of approximately

2n, which is the growth rate of the number of stages. This indicates the reservoir

 15

complexity will likely be a limiting factor as n increases and motivated an alternate

approach that allows removal of the reservoir. This is discussed in Section C.2.

Table 1. Reservoir Complexity.

n Stages

Max

Transfer

Paths

Minimum

Transfer

Paths

Total

Transfer

Paths

Bus

Width
Total Wires

Growth

Rate

2 4 7 4 25 4 100 -

4 16 31 16 391 16 6256 63

6 64 127 64 6175 64 395200 63

8 256 511 256 98431 256 25198336 64

10 1024 2047 1024 1573375 1024 16111136000 64

B. CIRCULAR PIPELINE

Each stage of the circular pipeline is similar to the parallel nonlinearity computers

of the conventional sieve architecture. However, additional logic is required to handle

the additional complexity of data flow. For each stage, a control unit must determine if a

function should be advanced to the next stage or ejected; additionally, whether or not a

function is incoming from the preceding stage or a new incoming function should be

accepted.

To accomplish this, a 1-bit signal inToPipei indicates if the stage Qi is accepting

the incoming function Ii from the MUX. If not, Ii is stored in the reservoir. The 2n-bit

intToPipe vector is used by the reservoir queuing unit to properly route functions to

registers in the reservoir.

An n-bit persistence P token accompanies each function throughout its procession

in the circular pipeline. A test must be performed to detect when P ≥ 2n, at which time

the FUT is determined to be bent, removed from the pipeline, and stored.

 16

1. Data Flow and Control Logic Complexity Comparison

The additional complexity required (which translates directly to logic (LUTs on

the SRC-6) required for design realization) is best understood by comparing data flow

through a traditional linear pipeline to the flow through a circular pipeline. Figure 6 is a

graphical depiction of the basic flow of information through a linear pipeline. For bent

function searches, this 4-stage pipeline applies to n = 2 and each stage is testing f against

a distinct linear function for a bent weight. If the function passes through all stages,

never failing a test, it is declared bent. Each stage has one input and one output and

completes its calculation in one clock. The architecture to control information flow is

simple, and throughput is fixed to one function per clock.

Figure 6. Linear Pipeline Information Flow.

Figure 7 is a depiction of the flow of information through a circular pipeline.

Figure 7a is the initial adaptation of the linear architecture and Figure 7b is a modified

version of 7a with the output of stage four wrapped around to be the input of stage one.

From this illustration, it is immediately clear that greater complexity is required to control

the flow of functions through the pipeline. Each stage now has a choice between two

inputs and two outputs, which requires controlling logic. An increase in throughput T is

the expected payoff.

 17

(a) (b)

Figure 7. Circular Pipeline Information Flow.

The design for optimal T by enabling every stage to output a result is depicted in

Figure 7. With the application we are applying to the circular pipeline, we choose to

simplify the design by allowing only one stage to output functions that are determined to

be bent, as illustrated in Figure 8.

Figure 8. Circular Pipeline Data with One Stage Output.

 18

This simplifies the output interface by disallowing the case that 2n functions are

found to be bent and sent as output on the same clock. If such a case were allowed, as in

Figure 7, the output bus would have to be 22n bits wide in order to simultaneously transfer

2n words of 2n bits each. The SRC-6 can support at least 16 output streams of 320 bits

each [6]. Therefore, there is no restriction on output stages through at least n = 4.

Nonetheless, the simpler design of a single output stage comes with the associated

benefits of simpler logic. With the simplification, illustrated by Figure 8, the output bus

is 2n bits wide and the instances of logic required to check the value of P is reduced from

2n to 1. With this design, every stage has two inputs from which to choose and only one

output (to the following stage), save for the one special stage that has an additional output

for functions determined to be bent. Additional ideas regarding this issue are presented

in Chapter VI Further Research.

C. FUNCTION GENERATOR

1. With Reservoir

The circular pipeline with reservoir architecture requires a function generator that

provides 2n functions on each clock and can be inhibited. This is an extension of the

simple counter in the conventional architecture that provided one function and always

incremented on each clock. In the conventional architecture, a simple counter used as the

function generator was produced with C-style statements implemented on the field

programmable gate array (FPGA). This is discussed in greater detail in the sections on

Verilog and SRC-6 implementation.

The function generator is also a simple counter when the circular pipeline is used

with a reservoir. On each clock, the function generator produces 2n functions, one for

each stage of the pipeline. The most significant n bits of each function fi are hardwired to

i (in binary). A 22
n n bit counter is concatenated onto the least significant bits. In this

way, 2n distinct truth tables of functions, each 2n bits long, are formed by the function

generator on each clock. The counter is inhibited on any clock that the reservoir’s L

registers are completely filled because in this case the reservoir provides the functions.

 19

The counter holds its value until the next clock for which the L registers are not

completely filled (most likely the very next clock), then resumes incrementing.

A done signal accompanies the FPGA-based function generator. After all

possible functions have been cycled through, a done bit signals function generator

completion. This signal also asserts the select bit on the input MUX, causing any

functions in the reservoir to be routed for insertion to the pipeline. Additionally, the

counter done signal initiates termination counter.

The final countdown is 5 × 2n – 1 clocks. This number of clocks is the worst-case

for how long it could take to flush the reservoir and circular pipeline. It occurs when all

functions in the circular pipeline (i.e. when the function generator signals done and the

reservoir is full with 2n+1 – 1 bent functions). If this were to happen, it would take 2n

clocks before the pipeline would accept any functions from the reservoir. After these 2n

clocks, one function per clock would be inserted to the pipeline, and each would persist

2n clocks. The last function from the reservoir is inserted after 2n+2 – 1 clocks and is

determined bent after 2n clocks, for a total of 5 × 2n – 1 clocks. When this number of

clocks is reached, following the function generator signaling completion, the exhaustive

test is declared complete and a done signal is asserted.

Using a final countdown rather than testing for and generating signals to indicate

the absence of FUTs in the pipeline is a tradeoff between circuit complexity and speed.

The final countdown requires the test to continue running for the entire duration of the

worst-case scenario, which is unlikely. Additional logic could terminate the test as soon

as all functions are removed from the pipeline saving many of the 5 × 2n – 1 clocks. But,

this is a very small percentage of the total number of clocks required for the test.

Simplifying the circuit and adding a small number of clocks to the test operation was the

favored choice.

2. Without Reservoir

Due to the complexity of the reservoir, an alternative design was constructed. In

this design, individual function generators exist for each stage. The single function

generator used in the conventional and circular pipeline with reservoir architectures is

 20

replaced by an array of 2n independent function generators (IFGs). Both designs

continuously produce 2n truth tables of functions. Each IFGi has its n uppermost bits

hardwired to its index (in binary), which range from 0 to 2n. The remaining lower order

bits of each IFG are an independent simple counter. The counter is inhibited any time its

associated stage receives a function passed from the preceding stage. If a FUT in a

preceding stage fails, no function is passed, a function from IFGi is inserted into its

corresponding stage Si, and then IFGi is incremented.

A disadvantage with this approach is the inefficiency resulting when IFGs

complete their cycle and then remain idle until the last IFG completes. Any Si is

underutilized from the time IFGi completes until the last IFG completes. This is because

there is no function available for insertion when the Si is open; Si continues only to test

functions passed from the preceding stage.

The circular pipeline with reservoir does not have this inefficiency because

functions are redistributed equitably to all stages until no functions remain. It was

postulated that the delta between IFGs’ completion times would not be significant,

especially as n increases. Due to the nature of bent functions, all stages are expected to

have an equal probability of passing or rejecting a function selected at random.

In this configuration, each IFG signals completion and its input to the stage is

invalidated. All 2n function generator’s done signals are AND’d with the 2n inToPipe

signals, one from each stage. Each asserted inToPipei signal indicates the FUT in stagei-1

was found not to have a bent weight. The output of this 2n+1-input AND function is

thereby asserted when all function generators have completed and there is no function

remaining in the circular pipeline with a bent weight. This signals completion of the

exhaustive test.

D. PERSISTENCE

Throughput is directly related to the average persistence, with the upper bound of

2n if all functions were to persist for only one clock period, and a lower bound of 1 if all

functions persist the 2n cycles required to determine a function is bent (theoretically,

throughput could be a small fraction less than 1, which is explained below).

 21

A function persists in the circular pipeline as long as the bitwise XOR with each

linear function returns a bent weight of 2n-1 ± 2n/2-1. The exact persistence of each

function will depend on where in the circular pipeline it is inserted and the order with

which the linear functions are placed amongst the stages. Having no insight into

advantages with any particular ordering of linear functions within stages, we give no

attention to this issue. We expect that the average persistence will depend on the

percentage of bent weights contained within all possible functions. A development of

this fraction of bent weights is provided in [4]:

For each value of n, there are 22
n

 n-variable functions, each of which has

a distance value to 2n linear functions for a total of 22
n n instances of a

weight. There are 2n linear functions, each of which is a distance 2n-1 ±

2n/2-1 from 1 /2 1
2

2 2
n

n n 
   

 other functions, for a total of 1 /2 1
22 2 2

n
n

n n 
   

instances of a weight of 2n-1 ± 2n/2-1. Thus, the fraction of instances of
weight that are 2n-1 ± 2n/2-1 is

1 /2 1 1 /2 1

2 2

2 22 2 2 2 2
.

2 2
n n

n n
n

n n n n

n n
A

   



            (1)

The results of the algorithm for even n, 2 ≤ n ≤ 8, are included in Table 2. Bn and

Nn are the expected number of bent and non-bent weights for the given An. The sum of Bn

and Nn is 2n. In practice, we cannot have fractional values. So, for this development of

an estimation of throughput and average persistence, we round Bn and Nn to the nearest

integer, notated as [Bn] and [Nn].

Table 2. Throughput and Average Persistence. From [4]

n An Expected
Bn

Expected
Nn

2n [Bn] [Nn] Calc..
Pavg

Calc.
Tn

Tn

Upper
Exp.
Pavg

E
x

2 0.500 2.0 2.0 4 2 2 1.40 2.86 4 2.50 1
4 0.244 3.9 12.1 16 4 12 1.31 12.2 16 1.65 9
6 0.121 7.8 56.2 64 8 56 1.14 56.1 64 - -
8 0.060 15.5 240.5 25 16 240 1.07 240. 256 - -

 22

To calculate Pavg for n = 4, we proceed as follows. There are five possible

sequences of weights for a function to encounter upon insertion to the circular pipeline.

These are illustrated in Table 3.

Table 3. Example Computation of Throughput for n = 4. From [4]

Sequence of Weights B and N
x is either B or N, such that
there are 4 B’s and 12 N’s.

Time in
Pipeline
(clocks)

Number
of Combi-

nations

Nxxx xxxx xxxx xxxx 1  15
4

BNxx xxxx xxxx xxxx 2  14
3

BBNx xxxx xxxx xxxx 3  13
2

BBBN xxxx xxxx xxxx 4  12
1

BBBB NNNN NNNN NNNN 5  11
0

In Table 3, an ‘x’ represents either a bent weight B or non-bent weight N, the

exact placement of each is unimportant, but must total the [Bn] and [Nn] values given in

Table 2. The first entry of Table 3 means that f is inserted into a stage for which it does

not have a bent weight. It is ejected from the pipeline, and its total time in the pipeline is

one clock. In the circular pipeline architecture, functions are always ejected immediately

upon failing to test for a bent weight. Of the 15 x’s following the initial N, four are bent

weights and 11 are non-bent weights, which totals Bn = 4 and Nn = 12. The number of

combinations for four bent weights to occur amongst 11 non-bent weights is given by

 15
4 , as shown in the Number of Combinations column of Table 3.

The second entry of Table 3 illustrates the scenario that a bent weight is found in

the first stage and is advanced to a second stage. In the second stage, a non-bent weight

is found and f is ejected from the pipeline. For this case, f spends 2 clocks in the pipeline

and there are  14
3 combinations for which this can occur.

 23

The fifth and final row of Table 3 illustrates the scenario for which f tests for four

consecutive bent weights in the first four stages it encounters. Since only four bent

weights reside within any 16 tests, the final 12 stages find non-bent weights. There is

 11
0 , which is simply one. With this data we can compute the average number of clocks

a function will persist in the pipeline for n = 4 as

         
         

15 14 13 12 11
4 3 2 1 0

15 14 13 12 11
4 3 2 1 0

1 2 3 4 5
1.31avgP

   
 

   
 (2)

It follows that throughput will be

42 16

12.2.
1.31avg

T
P

   (3)

Hence, in a 16-stage pipeline used to sieve for 4-variable bent weights,

approximately 12.2 functions can be processed each clock. Repeating the process for

larger n, we note from Table 3 that T approaches the upper bound of throughput as n

increases. This is due to bent weights becoming increasingly rare as n increases.

Butler [4] also ran a MATLAB simulation for n = 2 and n = 4 to find

experimental values for Pavg and Tn. These experimental results give lower T. A goal of

this thesis is to provide actual values of T, through n = 4, for the circular pipeline sieve

run of the SRC-6.

It is to be noted that the calculations and experimentally produced values

developed in this section have assumed a bent function is removed from the pipeline

upon reaching a persistence of 2n, Pbent = 2n. However, the architecture implemented in

this thesis is simplified by allowing bent functions to be extracted at only one stage.

Therefore, a bent function can persist longer than 2n, depending on where it is inserted to

the pipeline relative to the location of the bent-function extraction stage. The persistence

of a bent function fi,bent in this architecture is 2n ≤ Pi,bent ≤ 2n+1
 – 1. Due to the random

nature of function insertion location into the pipeline, the average of bent functions is

12 2 1

2 .
n n

bentP
  (4)

 24

The rare nature of bent functions minimizes the impact this additional persistence

will have on the average T, especially as n increases, and is ignored in the development of

Table 2.

1. Worst-Case Scenarios

For the circular pipeline applied as the bent function sieve, these worst-case

scenarios are impossible. However, they are included for completeness, as they should

be considered in alternative applications of the circular pipeline.

a. With Reservoir

The worst-case scenario, which would cause the T to fall below 1, occurs

when the pipeline processes only bent functions for the entire duration of the test. For the

first 2n – 1 clocks, all functions persist in the pipeline. From clocks 2n to 2n+1 – 1, the

initial 2n functions are removed and stored as bent functions. The average persistence of

this group of 2n functions given by Equation (4). Following this initial group, T remains

1 because all remaining functions are inserted into stage one and persist exactly 2n.

Therefore, if the number of functions inserted into the circular pipeline is 22
n

, the

average persistence of this worst-case scenario is

2
2

1

2

(2 2)

2

n
n n

i
n

i


 
.

b. Without Reservoir

Without a reservoir, we have an IFG associated with each stage. The

worst-case scenario begins the same as it does with a reservoir, with each stage receiving

a bent function on the first clock. After 2n clocks, new functions are inserted into stage

one, also similar behavior to the with reservoir design, and persist for exactly 2n clocks,

giving a persistence of 1. However, IFG1 will complete at which time IFG2 will begin

inserting its functions; it was previously blocked from inserting functions because S1 was

passing a function on every clock. The P of all functions produced by IFG2 will be the

worst case of 2n+1 – 1. This pattern continues around the circular pipeline; IFG3’s

 25

functions persist 2n+1 – 2 clocks, IFG4’s functions persist 2n+1 – 3 clocks, and so forth.

Therefore, the average persistence of this worst-case scenario is equal to Pbent, given in

Equation (4).

E. SUMMARY

In this chapter, the circular pipeline design concept was outlined; associated data

flow and conceptual issues were addressed. The next chapter covers implementation of

the circular pipeline concept in hardware.

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

IV. IMPLEMENTATION

The circular pipeline and all associated components, such as the reservoir, were

constructed in Verilog hardware description language and run on the SRC-6. The process

of accomplishing this is the topic of this chapter.

A. VERILOG IMPLEMENTATION

The circular pipeline architecture Verilog code is fully scalable to any n by

modification of a single parameter. Behavioral Verilog augmented with a handful of

structural statements is the coding style used. Most of the implementation of the design

described in Chapter III into Verilog was straightforward and is not described in further

detail. An overview of the Verilog design’s components and highlights of some specific

issues are discussed in this section. The full Verilog code is in the Appendix.

1. Reservoir

The reservoir is the most complex component in the circular pipeline design,

including the circular pipeline itself. The three main components of the reservoir are

priority encoders, adders, and registers.

a. Priority Encoders

2n+1 − 2 priority encoders are generated for the reservoir, one for each

register except for the topmost
2 2nQ


 resister. The priority encoders for the 2n L registers

each have 2n inputs, one for each of the T functions applied by the input MUX. The

number of inputs to the priority encoders for each Q register tapers off as 2n – i.

Starting with L0 and working up, each register’s priority encoder produces

the lowest-indexed function Ii that is being rejected from the circular pipeline and not

routed to a lower-indexed register. If there is no function to be routed to a given register,

its priority encoder produces all zeros.

 28

b. Adders

Adders are used to produce the number of vacant registers below each I

function. This number is the routing information needed to place a rejected function Ii

into the proper register, ensuring the reservoir is filled from the bottom up. The

assurance that the reservoir is filled from bottom up allows use of a thermo adder to

produce the value of vacant registers.

The 2n − 1 occupied-bits l associated with the L registers are applied to the

thermo adder if the topmost L register
2 1nL


is not occupied. If
2 1nL


 is completely filled,

the occupied-bits of the Q registers q are applied to the thermo adder. This is because,

when
2 1nL


 is occupied, all of the L registers are transferred out of the reservoir to the

input MUX and, simultaneously, all of the Q registers are transferred index-to-index into

the P registers on the next positive clock edge. The number of occupied registers on the

next positive clock edge is needed for proper routing of I functions. Therefore, the l bits

are applied to the thermo adder when
2 1nL


 is not occupied, and the q bits are applied

when
2 1nL


 is occupied.

The thermo adder’s Verilog code begins by inspecting the most significant

occupied bit q or l and proceeding down the indices. Upon finding an asserted occupied

bit, it is known that all less significant bits will also be asserted, and a value of i + 1 is

returned.

The output of the thermo adder is fed into a chain of 2n − 1 adders, one for

each I function above I0. I0 receives its sum used for routing directly from the thermo

adder. Each adder increases the input value by 1 if Ii−1 is being routed to the reservoir and

provides this sum to Ii and the next adder in the chain. The adder chain begins with the

sum provided by the thermo adder and continues the running sum by adding the NOT of

the bit inToPipei that corresponds to its function Ii. This running sum indicates the

number of functions that will remain in the reservoir below each Ii on the next positive

clock edge.

 29

c. Registers

The 2n+1 − 1 registers required by the reservoir are assigned within an

always@(posedge CLK) statement. This statement instantiates a register and is used only

once within the reservoir code for the purpose of creating the registers. Every register

receives its input through a MUX that selects between the output of its priority encoder or

the register’s current value. Each Li register has Qi as an additional input to its MUX for

the cases that the Q registers slide down.

2. Circular Pipeline

The circular pipeline is implemented using several modules that carry out the

operations described in the previous chapter. A function was created to describe the

behavior of a standard stage of the pipeline. This function is called 2n – 1 times. A

modified version of the standard pipeline stage function that has the additional

functionality of removing FUTs it determines to be bent (based on persistence) is

instantiated once. This gives a total of 2n stages. The remainder of the module consists

of control signals used to direct the flow of functions through the pipeline.

B. VERILOG DESIGN DEVELOPMENT AND TESTING

Project development was managed with Xilinx ISE 10.1. Synplify Pro D-2009.12

was used for synthesis and ModelSimSE 6.4 was used for simulation. The general

process was to build a section of code and synthesize. The synthesis report was then used

to correct any errors or warnings. Then synthesis would be run again. This process was

iterated until synthesis produced an error- and warning-free circuit that appeared

reasonable in the register transfer level (RTL) view. Figure 9, 10, and 11 are examples of

RTL schematics of a single circular pipeline stage for n = 4.

 30

Figure 9. Synplify Pro RTL View of a Circular Pipeline Stage. n = 4.

Figure 10. Synplify Pro RTL View of the Bent Weight Tester Within a Stage. n = 4.

Figure 11. Synplify Pro RTL View of a One’s Counter Within a Bent Weight Tester.
n = 4.

 31

Next, a Verilog test bench was built to specifically test the section of code under

development. First, the testbench was run by ModelSim and the circuit under test’s

behavior was modeled. The resulting waveform was then analyzed to ensure proper

behavior, corrections made, and the process iterated until the behavioral Verilog was

verified to be correct. Following the successful behavioral Verilog development, we

mapped the Verilog design to the target FPGA and a post-MAP simulation model was

returned by Xilinx ISE. This post-MAP model, which includes logic delay, would then

be simulated on ModelSim iteratively until successful functionality was verified. Figure

12 is a small section of a ModelSim post-map waveform of the circular pipeline returning

three bent functions. Post-map simulation models include logic delay, which is evident

by the output being delayed approximately 6ns from the positive edge of the clock (in the

figure, the clock is slowed from a runtime period of 10ns to a period of 16ns for

troubleshooting purposes).

Figure 12. ModelSim Post-map Simulation Result Excerpt.

C. SRC-6 IMPLEMENTATION

With a logic design successfully tested through post-map simulation, the final step

was implementation on the SRC-6. This involves coordinating the interaction between

the CPU that controls the process at runtime and the logic design programmed onto the

FPGA. Four files are required in addition to the Verilog design: main.c, info, blk.v, and

Makefile. These files are included in the Appendix.

 32

1. Macro Characteristics

The input/output requirements of the Verilog coded circular pipeline, known as a

macro in SRC-6 literature, must be characterized in order to choose an appropriate

implementation. The circular pipeline requires no input aside from the system clock. It

produces outputs that are held for one clock at unpredictable times throughout macro

execution. This is a marked difference from the conventional macro design, which was

called, returned a value, and terminated on each clock (the function generator was located

outside of the macro). This highly regular behavior allowed for the use of the simplest of

macro implementation—pure functional.

With the characteristic that the macro returns values while continuing its run, vice

returning a value at run termination, an external macro was also unfit for the circular

pipeline implementation. A stateful macro remained the only possibility among the

known types, but uncertainty remained on its suitability. Finally, on the advice of an

SRC engineer, a streaming external macro was explored and found fit to the circular

pipeline’s characteristics [7].

2. Streaming Output

Streaming output allows for data to be returned from the circular pipeline and

stored in On Board Memory (OBM) on any clock throughout the duration of the sieving

process. With the implemented circular pipeline returning a maximum of one function

per clock, no bottleneck will occur so long as n < 7. For n ≥ 7, the function width is

greater than 64 bits, and so a bottleneck could occur over the 64-bit bus used to transfer

data from the macro to OBM.

While this was not a concern, in implementations installed for this thesis due to

other limiting factors preventing n ≥ 7, the stream construct can handle such a case. The

SRC-6 stream construct includes a buffer that can be configured to handle a backlog of

data outflow and stall the circular pipeline until the backlog is processed (e.g. transferred

out).

 33

3. CPU

Top-level control is maintained by the CPU by the main.c file. The main.c file

allocates memory, calls a subroutine that leads to the macro, and prints results.

4. Subroutine and Macro Call

The subroutine is an interface between the main.c file and the macro. It is written

in C-style code, but implemented on the FPGA. The subroutine sets up data types, calls

the macro in a way that supports streaming, and passes data from OBM to the CPU. In

addition to the subroutine, the files info and blk.v configure the interface between the

CPU and the macro. They declare the input/output data types and sizes.

5. Timing

For n ≤ 5, all timing conditions are met with the circular pipeline, as describe to

this point. For n = 6, the mapper and place and route application are unable to meet the

timing constraint along the critical path. The SRC-6 uses a fixed clock of 100 MHz,

which means delay along every path must be equal to or less than 10ns.

The place and route application was unable to meet the 10ns timing constraint

along all paths for n = 6. However, the circular pipeline behaved as expected at runtime

for the sample set of function used. Thus, the critical paths identified by the place and

route application are probably not the true critical paths of the circular pipeline. Rather,

they are theoretical worst-case paths that the place and route application was unable to

eliminate as possibilities.

6. FPGA Resources

For n < 7, the resources of a single Xilinx Virtex2 XC2V6000 FPGA are

sufficient to realize the circular pipeline. For larger n, moderate changes to the SRC-6

implementation strategy must be adapted. Further details are included in Chapter VI.

Exact resource usage data for n < 7 is included in Chapter V.

 34

D. SUMMARY

In this chapter, the development process for circular pipeline implementation onto

the SRC-6 was covered. The next chapter provides a results from the implemented

circular pipeline.

 35

V. RESULTS

A. SPEEDUP

Speedup results of the circular pipeline with IFC are summarized in Table 4. The

clocks columns give the total number of clocks that the implemented design required to

complete an exhaustive test. Tn is throughput, Upper Bound is the maximum possible,

and Realized is what was achieved at runtime. This data is from the implemented

architecture running on the SRC-6, so it includes latency and overhead associated with

SRC-6 process control. For small n, this overhead is a large percentage of the clocks

needed for test completion. This is why the speedup for n ≤ 3 does not closely match the

realized Tn. For n > 3, the overhead is a very small percentage of total number of clocks

required to complete the exhaustive test. While the conventional design maintains a Tn>3

of nearly unity, the increased Tn>3 becomes the speedup realized, rendering Tn>3

equivalent to the speedup.

Due to excessive computational time requirements, on the order of decades,

complete results for n = 6 are impossible. However a test set of 3.2 × 1014 (1.7 × 10−3%

of all
622 functions required for an exhaustive test) were run and the results are prorated

to give a value for the complete enumeration. Asterisks denote these values.

T is calculated by dividing the number of functions processed by the number of

clocks.

22

n

nT
Clocks

 (5)

For example,
42

4

2
8.36

7,840
T  

Speedup is calculated by dividing the circular pipeline’s clocks by the

conventional design’s clocks.

 36

Table 4. Realized Speedup.

Circular Pipeline Tn Conventional Tn Clocks

n Upper

Bound
Realized

Upper

Bound
Realized Conventional Circular

Speedup

2 4 0.296 1 0.078 205 54 3.8

3 8 2.15 1 0.573 446 119 3.7

4 16 8.36 1 0.997 65,727 7,840 8.4

5 32 21.7 1 1 42.9 × 108 1.98× 108 21.7

6 64 55* 1 1 184× 1017* 3.33× 1017* 55*

*Estimate based on small sample size (number of functions tested << 22
n

)

From Table 4, it is noted that a 55 times speedup over the conventional sieve

design is achieved by the circular pipeline. More importantly, there is a trend of

increasing speedup as n increases. Figure 13 is a graph of this trend juxtaposed with the

upper bound of 2n; it is concluded that the speedup achieved by the circular pipeline is on

the order of 2n
.

 37

Figure 13. Realized Throughput.

The throughput plotted in Figure 13 does not simply follow the upper bound at a

reduced fraction, but approaches the upper bound as n increases. This conclusion is best

illustrated in Figure 14, which is normalized to 2n.

 38

Figure 14. Throughput Normalized to 2n.

B. RESOURCES

A comparison of resources consumed between the circular pipeline and

conventional design is provided in Table 5. The three resource categories are given as

percentages of the resources available on the Xilinx Virtex-II FPGA. A slice is the basic

building block of the FPGA. Each of the 44,096 slices contain two D flip-flog registers

and two 4-input Lookup Tables (LUTs), for a total of 88,192 each. From Table 5, we

conclude that LUTs are the limiting factor, as they are consumed at a higher rate than

registers as n increases. Therefore, the column Circular Pipeline Resource Multiple is the

fraction given by the 4-input LUTs percentage consumed by the conventional design

divided by the percentage consumed by the circular design.

For n ≤ 4 the circular pipeline consumes fewer resources than the conventional

design, as shown in Table 5. This is an unexpected and not well understood result. For n

≤ 7, the additional resources consumed are less than a multiple of three over the

conventional design. The additional resource consumption of the circular pipeline is

attributed to its control logic.

 39

Table 5. Resources Consumed Summary.

n Design
Registers

(%)
Occupied Slices

(%)
4-input LUTs

(%)
Circular Pipeline

Resource Multiple

Conventional 4 3 3
2

Circular 1 1 3
1

Conventional 4 6 3
3

Circular 1 2 3
1

Conventional 5 7 4
4

Circular 3 5 3
0.75

Conventional 5 9 6
5

Circular 5 10 7
1.17

Conventional 7 17 13
6

Circular 23 25 30
2.31

Conventional 9 42 38
7

Circular 50 113 94
2.47

C. RESERVOIR TRADEOFF

The use of a reservoir to queue and equitably distribute generated function among

the stages provides the fastest computation. However, the large demand on logic

resources and associated delay rendered its implementation unrealizable for n > 3. For

n ≥ 4, the worst-case path delay renders a maximum frequency of less than 30 MHz.

Attempts to pipeline the reservoir for the purpose of decreasing delay such that the 100

MHz fixed clock of the SRC-6 could be used were successful.

A comparison between the circular pipeline (without reservoir) and the circular

pipeline with reservoir is provided in Table 6. The number of clocks given for n ≥ 4 in

Figure 7 are simulation results, not runtime data from the SRC-6 like all other numbers.

Circuits for n ≥ 4 are unrealizable, so simulation results are required to make speedup

comparison. In practice, if the circular pipeline with queue architecture is to be

implemented, it would require more registers than what was reported for the unrealizable

circuit that was synthesized. However, even with double the registers, LUTs would still

 40

be the limiting factor. The number of LUTs is expected to remain constant, so the LUT

comparison for n ≥ 4, which is data taken from the map report, is valid. From Table 6

and the maximum frequency for n ≥ 4 being less than 30 MHz, it is clear that the resource

and timing demands of the reservoir cannot be met for large n and the simpler design is

better suited for the task.

Table 6. Circular Pipeline With and Without Reservoir (Res) Comparison.

Clocks LUTs
n

Res w/o Res
Speedup

Res w/o Res

Resource

Multiple

2 45 54 1.20 3 3 1

3 111 119 1.07 3 3 1

4 7,259 7,815 1.08 13 3 4.33

5 70 7 10

The speedup produced by the reservoir is limited by the delta between completion

times of the IFG. From Figure 15, we conclude that the trend responsible for a

significant portion of the maximum delta in completion times is due to using only one

stage to remove bent functions. An effect of using just one output stage is that a bent

function will persist 2n ≤ Pbent ≤ 2n+1 – 1, depending into which stage it is inserted. The

stage are numbered from 1 to 16 in Figure 15, beginning with the stage that results in

optimal Pbent and ending with worst case stage. As n increases, this effect will be reduced

as bent function become rarer. Figure 15 is a plot of additional clocks required by each

IFGi after the first IFG completed. This value is given as a percentage of the total clocks

required for the complete computation. IFG16 terminates 1667 clocks after IFG1, which

is 21.3% of the total clocks consumed.

 41

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IFG Number

A
d
d
it
io
n
al
 C
lo
ck
s

(%
 o
f
to
ta
l c
lo
ck
s)

Figure 15. Relative Completion Times of the IFG.

D. SUMMARY

The circular pipeline results in a speedup on the order of 2n over the conventional

architecture used to exhaustively sieve for n-variable bent functions. This speedup is

achieved with a small fraction of logic resources compared to what is required to achieve

a similar speedup with the conventional architecture.

For n = 6, a speedup of 55 times is realized with a resources increase of 2.3 times.

With the conventional design, a similar speedup would require a logic resources increase

of 55 times. This is because the only way to increase speedup with the fixed throughput

of the conventional design is the duplicate the circuit and distribute functions to be tested

equally between the duplicated circuits. Speedup gained in this way is utilizing

parallelism; doubling the instances of the circuit doubles the throughput. This method of

gaining speedup is amenable to the circular pipeline as well. However, for n = 6,

allocating triple the logic resources of a conventional design and replacing it with the

circular pipeline will achieve a speedup of 55 times, vice three times.

In this chapter, the throughput and resource consumption of implemented circular

pipelines were presented and analyzed. The next chapter concludes this thesis with

recommendation for further research.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSION

The circular pipeline architecture was implemented on the SRC-6 and

demonstrated speedup on the order of 2n. This speedup is realized with a logic resources

increase of less than threefold for n < 7. For n = 6, the ratio of speedup to logic resources

increase over conventional architecture is 55:2.3. Previous speedup gains were limited to

increases in parallelism, which yield a 1:1 ratio of speedup to logic resources

consumption increase. The circular pipeline is an efficient means of increasing

throughput in sieving applications.

The reservoir developed for this thesis provides for the most efficient use of the

circular pipeline by redistributing functions equitably. However, the delta of run time

between the IFGs is minor. Therefore, the cost in complexity of the reservoir is not

worth the speedup gained. Yet, the reservoir could be essential if the circular pipeline is

applied to other applications without same characteristics of the bent-function sieve

providing for an even distribution of passed and rejected functions among the stages.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

1. Multiple Output Stages

The design presented in this thesis was assuming a hard limitation of a single 64-

bit output bus. This motivated the design to restrict output from a single stage. In order

to run the circular pipeline on the SRC-6, techniques new to the Naval Postgraduate

School were implemented. Namely, the use of output streams was critical for the circular

pipeline’s behavior. While learning the use of output streams, it was realized that up to

16 1024-bit wide output streams can be used. The streams have a programmable buffer

mechanism to take care of any bottleneck problems over the 64-bit output bus. Using all

 44

16 of these output streams (for n ≥ 4) should be a fairly simple improvement to

implement. This will result in more LUTs required for the additional stages tasked with

examining the persistence token, but will improve throughput.

2. Pipelined Reservoir

As noted in Chapter IV, pipelining attempts with the circular pipeline with

reservoir design failed. However, it may be possible. If the circular pipeline is to be

applied to other applications, the reservoir will likely be more important, so pipelining it

to reduce the worst-case path delay could be important.

3. Multiple FPGAs

For n ≥ 7, the circular pipeline design does not fit on a single Virtex-II FPGA.

Multiple FPGAs must be used for these cases. This is a nontrivial SRC-6 implementation

issue that will also require modification to the Verilog code. Solving this issue will likely

have the most impact on the continuing bent-function research at the Naval Postgraduate

School.

4. Function Generators

While this thesis focuses on speedup via hardware design, the most important

speedups moving forward will be gained by reducing the number of functions that require

testing. This is the current focus of the continuing bent functions research at the Naval

Postgraduate School. Understanding special characteristics of bent functions and using

this understanding to eliminate many of the functions included in an exhaustive test is the

first step. Building a function generator to produce only these functions is the second

step. For the circular pipeline produced in this thesis, it is important that the 2n IFG

produce, on average, functions with the same total number of bent weights.

This area of research requires in-depth mathematical understanding of bent

functions as well as ingenuity with Verilog hardware design. In return, it will likely

produce the most significant results.

45

APPENDIX. PROGRAMMING CODE

A. VERILOG

1. Circular Pipeline With Independent Function Generators

//--
// MY_CIRC_Pipe.v - An interface between the circular pipeline code that sets up streaming
// with the SRC-6. Based on the SRC example user_one_stream.
//
// Created: August 7, 2010
// Last Modified: September 3, 2010
// Author: Chris Johnson
//
// Notes: DATA_OUT bus width is not parameterized; must be manually edited for n>5.
// modDATA_OUT must be edited for n>6.
//
// Sub-module calls: CircPipe.v
//
//--

module MY_CIRC_PIPE (
 input START,
 input CLK,
 input CLR,
 output reg DONE,
 output reg [31:0] DATA_OUT,
 output reg VALID_OUT,
 input STALL_IN,
 output reg TERM_OUT
);

46

//parameter names for the states
localparam IDLE = 0;
localparam ACTIVE = 1;
localparam STALLED = 2;
localparam FINISHING = 3;

reg [1:0] state;

//wire connections from module call
wire modDONE;
wire [63:0] modDATA_OUT;
wire modVALID_OUT;
wire modTERM_OUT;

always @*

if (CLR) begin
DATA_OUT <= 0;

 DONE <= 0;
 VALID_OUT <= 0;
 TERM_OUT <= 0;
 state <= 0;
 end

else
 case (state)
 IDLE: if (START) begin
 DATA_OUT <= 0;
 VALID_OUT <= 1;
 state <= ACTIVE;
 end

ACTIVE: begin
 DATA_OUT <= modDATA_OUT;

DONE <= modDONE;
 VALID_OUT <= modVALID_OUT;
 TERM_OUT <= modDONE;
 state <= ACTIVE;
 if (STALL_IN) begin

47

 VALID_OUT <= 0;
 state <= STALLED;
 end
 end

STALLED: if (~STALL_IN) begin
 VALID_OUT <= 1;
 state <= ACTIVE;
 end

FINISHING: begin
 state <= IDLE;
 end

default:;
endcase

CircPipe u1(START,CLK,CLR,modDONE,modDATA_OUT,modVALID_OUT,STALL_IN);

endmodule

//--
// CircPipe.v - The circular pipeline with independent function generators top level module.
//
// Created: December 22, 2009
// Author: Jon T. Butler
// Last Modified: September 3, 2010
// Modified by: Chris Johnson
//
// Notes: Set parameter ‘n’ in this file. It is passed to all sub-modules.
//
// Called by: MY_CIRC_PIPE.v
//
// Sub-module calls: countersMod.v
// Stage_TT.v
//

48

// This implements the circular pipeline. For n-variable functions, there are N = 2**n stages,
// one for each linear function (we need only compare against the linear functions, since a
// function that has a bent distance from all linear function, has a bent distance away from
// all affine functions. In this realization, only one stage has a bent function output - to
// simplify the circuit. In this way, the circular pipeline serves as a buffer. In this
// case a bent function will go through from N to 2N-1 stages.
//
//--
//
module CircPipe #(parameter n=6, parameter N=2**n) //n is number of variables. N is # of bits in func’s TT.
 (input START,
 input CLK,
 input CLR,
 output reg done, //Asserted when all counters are done & pipe empty.
 output [63:0] BENT,
 output valid_out, // Indicates a valid bent function is at BENT.
 input STALL_IN
);

wire [N-1:0] countDone; // Set when counter has completed one cycle
wire [N-1:0] LIN_FNC [N-1:0];
wire [N-1:0] REJECT; // 0 bit indicates FNCS word not accepted.
reg temp;
wire [N-1:0] FNCS [N-1:0]; // Each of the N words in counter FNCS has N bits.
wire [n-1:0] FNCShob [N-1:0]; // High order bits for the counter
wire [N-n-1:0] counter [N-1:0]; // N simple counters, extra bit to signal counter is done
wire [N-1:0] to_stage;
wire [N-1:0] stage_TT [N-1:0];
wire [n+1:0] no_passes [N-1:0];

genvar g;

//

////CREATE INDEPENDENT FUNCTION GENERATORS (IFG)/////////////////////
////Instantiate independent counters for function gens///////////////

49

generate
for (g=0; g<N; g=g+1)
 begin: CountersGen
 countersMod #(.n(n)) u4(START,CLK,CLR,STALL_IN,REJECT[g],counter[g],countDone[g]);
 end
endgenerate

generate
//Generate high order bits
for (g=0; g<N; g=g+1)
 begin: CounterHOB
 assign FNCShob[g] = g;
 end
endgenerate
//Generate counters
generate
for (g=0; g<N; g=g+1)
 begin: CounterConcat
 assign FNCS[g] = countDone[g] ? {N{1'b0}} : {FNCShob[g],counter[g]};
 end
endgenerate
////CREATE INDEPENDENT FUNCTION GENERATORS (IFG)/////////////////////

////TERMINATION SIGNAL///
always@*
 if(countDone[N-1:0] == {N{1'b1}} && to_stage[N-1:0] == {N{1'b0}})
 done <= 1'b1;
 else
 done <= 1'b0;
////TERMINATION SIGNAL///

////LINEAR FUNCTIONS///
generate
for (g=0; g<N; g=g+1)
 begin: LinearGen
 assign LIN_FNC[g] = Linear(g);
 end

50

endgenerate

function [N-1:0] Linear(input [n-1:0] Y);
 integer j;
 integer k;
 reg [n-1:0] X;
 begin
 for (j=0; j<N; j=j+1)
 begin
 X = j;
 temp=0;
 for (k=0; k<n; k=k+1)
 begin
 temp = temp ^ (X[k] & Y[k]);
 end
 Linear[N-1-X] = temp;
 end
 end
endfunction
////LINEAR FUNCTIONS///

////INSTANTIATE STAGES///
generate
for (g=0; g<N; g=g+1)
 begin: Stages
 if(g != 0) begin
 stage #(.n(n)) u2(CLK, FNCS[g], REJECT[g], to_stage[g-1], to_stage[g], stage_TT[g-1],
LIN_FNC[g], stage_TT[g], no_passes[g-1], no_passes[g], countDone[g]);
 end
 if(g == 0) begin
 stage1 #(.n(n)) u3(CLK, FNCS[g], REJECT[0], to_stage[N-1], to_stage[0], stage_TT[N-1],
LIN_FNC[0], stage_TT[0], no_passes[N-1], no_passes[0], countDone[g], BENT, valid_out);
 end
 end
endgenerate
////INSTANTIATE STAGES//

51

endmodule

//--
// countersMOD.v - Instantiates an inhabitable counter.
//
// Created: August 11, 2010
// Author: Chris Johnson
// Last Modified: September 3, 2010
//
// Notes: This counter is the lower N-n-1 bits of the function gen in CountersMod.v.
//
// Called by: CountersMod.v
//
// Sub-module calls: None
//
//--
//
module countersMod #(parameter n = 6, parameter N=2**n)

(input START,
 input CLK,
 input CLR,
 input STALL_IN,
 input REJECT,
 output reg [N-n-1:0] counter,
 output reg countDone
);
reg [1:0] state = 0;

always@(posedge CLK, posedge CLR)
 if(CLR) begin
 countDone <= 0;
 counter <= 0;
 state <= 0;
 end
 else
 case(state)

52

 0: if (START) begin
 counter <= 0;
 state <= 1;
 countDone <= 0;
 end
 1: begin //counter active
 if(!REJECT && !STALL_IN)
 counter <= counter + 1;
 if(counter == 2**(N-n)-1)
 begin
 state <= 2;
 end
 end
 2: begin //counter complete
 countDone <= 1'b1;
 counter <= {N{1'b0}};
 state <= 0;
 end
 default:;
 endcase
endmodule

//--
// stage.v - One (simple) stage only.
//
// Created: December 22, 2009
// Author: Jon T. Butler
// Last Modified: September 3, 2010
// Modified by: Chris Johnson
//
// Notes: This does NOT put out a bent function.
//
// Called by: CountersMod.v
//
// Sub-module calls: test_for_bent.v
//

53

//--
//
module stage #(parameter n=6, parameter N=2**n) //n is number of variables. N is # of bits in func’s TT.
 (

input CLK,
input [N-1:0] FNCS_TT_in,
output reg REJECT,
input to_next_stage_in,
output pass,
input [N-1:0] stage_TT_in,
input [N-1:0] LIN_FNC,
output reg [N-1:0] stage_TT_out,
input [n+1:0] no_passes_in,
output reg [n+1:0] no_passes_out,
input countDone
);

test_for_bent #(.n(n)) u1(stage_TT_out,LIN_FNC,passU1);
and stgs(pass,passU1,valid); //output pass signal if input is valid and TT passes

always@* //Can prune this signal and just use to_next_stage_in
 if(to_next_stage_in==1)
 REJECT <= 1;
 else
 REJECT <= 0;

always@(posedge CLK)
 if(to_next_stage_in==1) //Data to this stage comes from previous stage.
 begin
 stage_TT_out <= stage_TT_in;
 valid <= 1;
 no_passes_out <= no_passes_in + 1;
 end
 else //Data to this stage comes in from input buffer.
 begin
 stage_TT_out <= FNCS_TT_in;
 valid <= !countDone; //valid iff counter is not yet done

54

 no_passes_out <= 0;
 end
endmodule
/////////////////////////////////// RESULTS /////////////////////////////////////

// n = 2 4 6 8 10 12
// Freq. 181.8 144.8 73.0 53.4 42.9 35.9
// #LUTs (%) 16(0%) 67(0%) 304(0%) 1251(1%) 5384(7%) 22179(32%)
// Reg.Bits not i/o 4(0%) 23(0%) 77(0%) 283(0%) 1037(1%) 4352(6%)

///

//--
// stage1.v - One stage only.
//
// Created: December 22, 2009
// Author: Jon T. Butler
// Last Modified: September 3, 2010
// Modified by: Chris Johnson
//
// Notes: This does put out a bent function.
//
// Called by: CountersMod.v
//
// Sub-module calls: test_for_bent.v
//
//--
//
module stage1 #(parameter n=6, parameter N=2**n) //n is number of variables. N is # of bits in func’s TT.

(
input CLK,
input [N-1:0] FNCS_TT_in,
output reg REJECT,
input to_next_stage_in,
output reg to_next_stage_out,
input [N-1:0] stage_TT_in,

55

input [N-1:0] LIN_FNC,
output reg [N-1:0] stage_TT_out,
input [n+1:0] no_passes_in,
output reg [n+1:0] no_passes_out,
input countDone,
output reg [N-1:0] BENT,
output reg valid_out

);

wire passU1;
reg valid;

test_for_bent #(.n(n)) u1(stage_TT_out,LIN_FNC,passU1);
and stgs1(pass,passU1,valid); //output pass signal if input is valid and TT passes

always@* to_next_stage_out <= (pass && (no_passes_out < N));

always@*
 if(to_next_stage_in==1)
 REJECT <= 1;
 else
 REJECT <= 0;

always@(posedge CLK)
 if(no_passes_out >= N)
 begin
 BENT <= stage_TT_out;
 valid_out <= 1;
 end
 else
 begin
 BENT <= {N{1'b0}};
 valid_out <= 0;
 end
always@(posedge CLK)
 if(to_next_stage_in==1) //Data to this stage came from previous stage.
 begin

56

 stage_TT_out <= stage_TT_in;
 no_passes_out <= no_passes_in + 1;
 valid <= 1;
 end
 else
 begin
 stage_TT_out <= FNCS_TT_in;
 no_passes_out <= 0;
 valid <= !countDone; //valid iff counter is not done
 end
endmodule
//

//--
// test_for_bent.v - Compares nonlinearity with the two possible bent weights for n.
//
// Created: December 22, 2009
// Author: Jon T. Butler
// Last Modified: September 3, 2010
// Modified by: Chris Johnson
//
// Notes: Nonlinearity is returned from Ones_Count.v
//
// Called by: stage.v
// stage1.v
//
// Sub-module calls: Ones_Count.v
//
//--
//
module test_for_bent #(parameter n=6, parameter N=2**n) //n is number of variables. N is # of bits in TT.

(
input [N-1:0] TT_in,
input [N-1:0] LIN_FNC,
output reg pass

);
//

57

parameter n = 6; // n = number of variables
localparam N = 2**n; // N = number of bits in truth table of an n-variable function.
//
reg [N-1:0] Ham_dist;
wire [n:0] Count;

always @*
 begin
 Ham_dist = TT_in ^ LIN_FNC;
 if(Count == 2**(n-1) - 2**(n/2-1) || Count == 2**(n-1) + 2**(n/2-1))
 pass = 1;
 else
 pass = 0;
 end
//
Ones_Count u2 (Ham_dist, Count);
defparam u2.n = n;
//
endmodule

/////////////////////////////////// RESULTS /////////////////////////////////////

// n = 2 4 6 8 10
// Freq. 140.8 94.1 55.5 44.0 35.5
// #LUTs (%) 5(0%) 46(0%) 219(0%) 949(1%) 3421(3%)

///

///
module Ones_Count(TT, Count);
//--
// Ones_Count.v - A program to count the number of 1's in HD (Hamming Distance), producing that
// count at Count. This version of Ones_Count.v uses functions.
//
// Created: August 18, 2007
// Last Modified: December 26, 2009

58

// Author: Jon T. Butler
//
// Inputs: TT
// Outputs: Count
//
// Notes: 1. For n=2, this circuit builds a 4-input 3-output 1s count circuit that is intended to
// make efficient use of the 4-input LUTs in the SRC's FPGA.
//
//--

 parameter n = 10; // At n=6, freq = 79.9 MHz. and it does not compile at n=7.
 localparam N = 2**n;
 output [n:0] Count;
 input [N-1:0] TT;
 reg [n:0] Count; // If Count is wire, ModelSim complains of "illegal reference to net
 // Count" below. I believe it is because Count should be declared a
 // reg, per discussion on p. 178 of Palnitkar. Unfortunately, this
 // is not a combinational logic circuit. Using 'task' does not seem
 // to help. Both input and output variables must be reg.

 always @(TT)
 begin: CHECK_n
 case(n)
 2: Count <= Count2(TT);
 3: Count <= Count3(TT);
 4: Count <= Count4(TT);
 5: Count <= Count5(TT);
 6: Count <= Count6(TT);
 7: Count <= Count7(TT);
 8: Count <= Count8(TT);
 9: Count <= Count9(TT);
 10:Count <= Count10(TT);
 11:Count <= Count11(TT);
 12:Count <= Count12(TT);
 endcase
 end

59

//***\/
//***** The 1's count function - Count10 for 12-variable functions *****\/
function [12:0] Count12;
 input [4095:0] TT;

 begin: f12
 Count12 = Count11(TT[4095:2048]) + Count11(TT[2047:0]);
 end
endfunction

//***** The 1's count function - Count12 for 12-variable functions *****\/
//***\/
//***\/
//****** The 1's count function - Count11 for 11-variable functions ******\/
function [11:0] Count11;
 input [2047:0] TT;

 begin: f11
 Count11 = Count10(TT[2047:1024]) + Count10(TT[1023:0]);
 end
endfunction

//****** The 1's count function - Count9 for 11-variable functions ******\/
//***\/
//***\/
//***** The 1's count function - Count10 for 10-variable functions *****\/
function [10:0] Count10;
 input [1023:0] TT;

 begin: f10
 Count10 = Count9(TT[1023:512]) + Count9(TT[511:0]);
 end
endfunction

//***** The 1's count function - Count10 for 10-variable functions *****\/
//***\/
//***\/

60

//****** The 1's count function - Count9 for 9-variable functions ******\/
function [9:0] Count9;
 input [511:0] TT;

 begin: f9
 Count9 = Count8(TT[511:256]) + Count8(TT[255:0]);
 end
endfunction

//****** The 1's count function - Count9 for 9-variable functions ******\/
//***\/
//***\/
//****** The 1's count function - Count7 for 7-variable functions ******\/
function [8:0] Count8;
 input [255:0] TT;

 begin: f8
 Count8 = Count7(TT[255:128]) + Count7(TT[127:0]);
 end
endfunction

//****** The 1's count function - Count7 for 7-variable functions ******\/
//***\/
//***\/
//****** The 1's count function - Count7 for 7-variable functions ******\/
function [7:0] Count7;
 input [127:0] TT;

 begin: f7
 Count7 = Count6(TT[127:64]) + Count6(TT[63:0]);
 end
endfunction

//****** The 1's count function - Count7 for 7-variable functions ******\/
//***\/
//***\/
//****** The 1's count function - Count6 for 6-variable functions ******\/

61

function [6:0] Count6;
 input [63:0] TT;

 begin: f6
 Count6 = Count5(TT[63:32]) + Count5(TT[31:0]);
 end
endfunction

//****** The 1's count function - Count6 for 6-variable functions ******\/
//***\/
//***\/
//****** The 1's count function - Count5 for 5-variable functions ******\/
function [5:0] Count5;
 input [31:0] TT;

 begin: f5
 Count5 = Count4(TT[31:16]) + Count4(TT[15:0]);
 end
endfunction

//****** The 1's count function - Count5 for 5-variable functions ******\/
//***\/
//***\/
//****** The 1's count function - Count4 for 4-variable functions ******\/
function [4:0] Count4;
 input [15:0] TT;

 begin: f4
 Count4 = Count3(TT[15:8]) + Count3(TT[7:0]);
 end
endfunction

//***** The 1's count function - Count4 for 4-variable functions ******\/
//***\/
//***\/
//****** The 1's count function - Count3 for 3-variable functions ******\/
function [3:0] Count3;

62

 input [7:0] TT;

 begin: f3
 Count3 = Count2(TT[7:4]) + Count2(TT[3:0]);
 end
endfunction

//****** The 1's count function - Count3 for 3-variable functions ******\/
//***\/
//***\/
//****** The 1's count function - Count2 for 2-variable functions ******\/
function [2:0] Count2;
 input [3:0] TT;

 begin: f2
 Count2[0]=TT[3]^TT[2]^TT[1]^TT[0];

Count2[1]=(TT[3]&TT[2]|TT[3]&TT[1]|TT[3]&TT[0]|TT[2]&TT[1]|TT[2]&TT[0]|TT[1]&TT[0])&~(TT[3]&TT[2]&TT[1]&TT[0
]);
 Count2[2]=TT[3]&TT[2]&TT[1]&TT[0];
 end
endfunction

//****** The 1's count function - Count2 for 2-variable functions ******\/
//***\/

/////////////////////////////////// RESULTS /////////////////////////////////////

// n = 2 4 6 8 10
// Freq. 149.9 96.7 73.7 47.6 38.7
// #LUTs (%) 3(0%) 32(0%) 71(0%) 595(0%) 2296(3%)
endmodule
//
//////
//
//////

63

//
//////
//
//////

/////////////////////////////////// RESULTS /////////////////////////////////////

// n = 2 3 4 5 6
//
//nonlinearity - over all functions/rot. sym. func./symmetric func.
// 0 8/4/4 16/4/4 32/ 4/ 4 64/ 4/ 4 ?/ 4/ 4
// 1 8/4/4 128/8/8 512/ 8/ 8 2048/ 8/ 8 ?/ 8/ 8
// 2 0/0/0 112/4/4 3840/ 8/ 4 31744/ 4/ 4 ?/ 8/ 4
// 3 0/0/0 0/0/0 17920/ 8/ 0 317440/ 0/ 0 ?/ 16/ 0
// 4 0/0/0 0/0/0 28000/12/ 4 2301440/ 0/ 0 ?/ 20/ 0
// 5 0/0/0 0/0/0 14336/16/ 8 12888064/24/ 8 ?/ 16/ 0
// 6 0/0/0 0/0/0 896/ 8/ 4 57996288/48/ 16 ?/ 56/ 8
// 7 0/0/0 0/0/0 0/ 0/ 0 215414784/24/ 8 ?/ 88/ 16
// 8 0/0/0 0/0/0 0/ 0/ 0 647666880/ 0/ 0 ?/ 80/ 8
// 9 0/0/0 0/0/0 0/ 0/ 0 1362452480/ 0/ 0 ?/ 152/ 0
// 10 0/0/0 0/0/0 0/ 0/ 0 1412100096/36/ 4 ?/ 184/ 0
// 11 0/0/0 0/0/0 0/ 0/ 0 556408832/72/ 8 ?/ 144/ 0
// 12 0/0/0 0/0/0 0/ 0/ 0 27387136/36/ 4 ?/ 324/ 4
// 13 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 432/ 8
// 14 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 360/ 4
// 15 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 648/ 8
// 16 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 832/ 8
// 17 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 768/ 0
// 18 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/1076/ 0
// 19 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/1304/ 0
// 20 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/1232/ 0
// 21 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/1536/ 16
// 22 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/1924/ 16
// 23 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/2232/ 0
// 24 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/1612/ 0
// 25 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 752/ 0

64

// 26 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 432/ 4
// 27 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 96/ 8
// 28 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 48/ 4
// 29 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 0/ 0
// 30 0/0/0 0/0/0 0/ 0/ 0 0/ 0/ 0 ?/ 0/ 0

// Notes:
// 1. Values for ALL functions for n = 6 were not obtained, since this computation
// takes more than 5000 years at 100 MHz..
// 2. Values for ROT. SYM. functions for n = 7 were not obtained because, after
// 15 hours of compilation time, Synplify Pro issued an "Out-of-Memory"
// error message.
// 3. Values for SYMMETRIC functions for n = 7 were not obtained because, after
// 15 hours of compilation time, Synplify Pro issued an "Out-of-Memory"
// error message

65

2. Circular Pipeline With Reservoir

Modules identical to those in the circular pipeline with IFGs (code in section 1) are not replicated in this section.

//--
// MY_CIRC_Pipe.v - An interface between the circular pipeline w/reservoir code that sets up
// streaming with the SRC-6. Based on the SRC example user_one_stream.
//
// Created: August 20, 2010
// Last Modified: September 3, 2010
// Author: Chris Johnson
//
// Notes: DATA_OUT bus width is not parameterized; must be manually edited for n>5.
// modDATA_OUT must be edited for n>6.
//
// Sub-module calls: CircPipe.v
//
//--

module MY_STREAM_TEST (
 CNT,
 START,
 CLK,
 CLR,
 DONE,
 DATA_OUT,
 VALID_OUT,
 STALL_IN,
 TERM_OUT
);
 input [31:0] CNT;
 input START;
 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */;
 input CLR;
 output DONE;

66

 output [31:0] DATA_OUT;
 output VALID_OUT;
 input STALL_IN;
 output TERM_OUT;
 // output [N-n-1:0] COUNTER;

 reg [31:0] DATA_OUT;
 reg VALID_OUT;
 reg TERM_OUT;
 reg DONE;
 reg [1:0] state;

 parameter IDLE = 0;
 parameter ACTIVE = 1;
 parameter STALLED = 2;
 parameter FINISHING = 3;

wire modDONE;
wire [63:0] modDATA_OUT;
wire modVALID_OUT;
wire modTERM_OUT;

 always @*// (posedge CLK or posedge CLR)
 if (CLR) begin
 DATA_OUT <= 0;
 DONE <= 0;
 VALID_OUT <= 0;
 TERM_OUT <= 0;
 state <= 0;
 //COUNTER <= 0;
 end
 else
 case (state)
 IDLE: if (START) begin
 DATA_OUT <= 0;
 VALID_OUT <= 1;
 // COUTNER <= 0;

67

 state <= ACTIVE;
 end

 ACTIVE: begin

DATA_OUT <= modDATA_OUT;
 DONE <= modDONE;
 VALID_OUT <= modVALID_OUT;
 TERM_OUT <= modDONE;

if (STALL_IN) begin
 VALID_OUT <= 0;
 state <= STALLED;
 end
 end

 STALLED: if (~STALL_IN) begin
 VALID_OUT <= 1;
 state <= ACTIVE;
 end

 FINISHING: begin
 //DONE <= 0;
 state <= IDLE;
 end
 default:;
 endcase

CircPipe u2(START,CLK,CLR,modDONE,modDATA_OUT,modVALID_OUT,STALL_IN,modTERM_OUT);

endmodule

//--
// CircPipe.v - The circular pipeline with independent function generators top level module.
//

68

// Created: December 22, 2009
// Author: Jon T. Butler
// Last Modified: September 3, 2010
// Modified by: Chris Johnson
//
// Notes: Set parameter ‘n’ in this file. It is passed to all sub-modules.
//
// Called by: MY_CIRC_PIPE.v
//
// Sub-module calls: countersMod.v
// Stage_TT.v
//
// This implements the circular pipeline. For n-variable functions, there are N = 2**n stages,
// one for each linear function (we need only compare against the linear functions, since a
// function that has a bent distance from all linear function, has a bent distance away from
// all affine functions. In this realization, only one stage has a bent function output - to
// simplify the circuit. In this way, the circular pipeline serves as a buffer. In this
// case a bent function will go through from N to 2N-1 stages.
//
//--
//
module CircPipe #(parameter n=5, parameter N=2**n)
 (input START,
 input CLK,
 input CLR,
 output done,
 output [63:0] BENT,
 output valid_out,
 input STALL_IN,
 output reg term_out

);

wire [N-1:0] LIN_FNC [N-1:0];
wire [N-1:0] REJECT; // 0 bit indicates FNCS word not accepted.
reg temp;
wire INHIBIT; // signal from the queue to pause counters
wire [N-1:0] FNCS [N-1:0]; // Each of the N words in counter FNCS has N bits.

69

wire [N*N-1:0] FNCS_1d; //for connection to queue module
wire [N*N-1:0] QUEUE; //output of reservoir queue
wire [n-1:0] FNCShob [N-1:0]; //high order bits for the counter
wire [N-n-1:0] counter; //simple counter, extra bit to signal counter is done
wire [N-1:0] to_stage;
wire [N-1:0] stage_TT [N-1:0];
wire [n+1:0] no_passes [N-1:0];

genvar g;

///

////////////////FUNCTION GENERATOR////////////////////////////////////
//instantiate a single counter
countersMod #(.n(n)) u4(START,CLK,CLR,STALL_IN,INHIBIT,counter,done);

generate
//Generate high order bits
for (g=0; g<N; g=g+1)
 begin: CounterHOB
 assign FNCShob[g] = g;
 end
endgenerate
//Generate function generators
generate
for (g=0; g<N; g=g+1)
 begin: CounterConcat
 assign FNCS[g] = {FNCShob[g],counter[N-n-1:0]};
 end
endgenerate
//Create 1-d version of function generators for i/o interface
generate
for (g=0; g<N; g=g+1)
 begin: FNCS1d
 assign FNCS_1d[g*N+N-1:g*N] = FNCS[g];
 end
endgenerate

70

////////////////FUNCTION GENERATOR////////////////////////////////////

////////////LINEAR FUNCTIONS///
generate
for (g=0; g<N; g=g+1)
 begin: LinearGen
 assign LIN_FNC[g] = Linear(g);
 end
endgenerate

function [N-1:0] Linear(input [n-1:0] Y);
 integer j;
 integer k;
 reg [n-1:0] X;
 begin
 for (j=0; j<N; j=j+1)
 begin
 X = j;
 temp=0;
 for (k=0; k<n; k=k+1)
 begin
 temp = temp ^ (X[k] & Y[k]);
 end
 Linear[N-1-X] = temp;
 end
 end
endfunction
////////////LINEAR FUNCTIONS///

////////////RESERVOR/QUEUE///
CircPipeQue #(.n(n)) QueModule(CLK, FNCS_1d, REJECT, INHIBIT, QUEUE);
////////////RESERVOR/QUEUE///

////////////STAGES///
generate
for (g = 0; g<N; g=g+1)

71

 begin: Stages
 if(g != 0) begin
 stage #(.n(n)) u2(CLK, QUEUE[g*N+N-1:g*N], /*VALID_IN[g],*/ REJECT[g], to_stage[g-1],
to_stage[g], stage_TT[g-1], LIN_FNC[g], stage_TT[g], no_passes[g-1], no_passes[g]);
 end
 if(g == 0) begin
 stage1 #(.n(n)) u3(CLK, QUEUE[N-1:0], /*VALID_IN[0],*/ REJECT[0], to_stage[N-1],
to_stage[0], stage_TT[N-1], LIN_FNC[0], stage_TT[0], no_passes[N-1], no_passes[0], BENT, valid_out);
 end
 end
endgenerate
////////////STAGES///

endmodule

//--
// CircPipeQue.v - Reservoir and queue for circular pipeline.
//
// Created: March 30, 2010
// Author: Chris Johnson
// Last Modified: September 3, 2010
//
// Notes: None
//
// Called by: CircPipe.v
//
// Sub-module calls: pri_enc.v
// thermo_adder.v
//
//--
//
module CircPipeQue #(parameter n=3, parameter N=2**n)
 (input CLK,
 input [N*N-1:0] gen_1,
 input [N-1:0] reject,
 output inFromRes, //stall function generator

72

 output reg [N*N-1:0] queue
);

localparam SHAMT_WIDTH = n+1; //number of bits for shamt. n is enough to hold the max transfer distance

wire [N-1:0] inToPipe;
reg [N-1:0] in [N-1:0]; //Output of MUX that selects candidates for pipeline
wire [N*N-1:0] in_1; // 1-d version of in
reg [N-1:0] res [2*N-2:0]; //extra reg for pipelining
wire [N*(2*N-1)-1:0] reswire;
reg [SHAMT_WIDTH:0] shamt [N:0]; //shift amount using to route TT's into "res"
wire [3*2**(2*n-1)-2**(n-1)-2:0] shamt_sel; //translate shamt into sel lines for use in pri_enc
 //vector width is equivalent to sum(2^n,2^(n+1)-1)
wire [N-1:0] out [2*N-2:0];
reg [N-1:0] gen [N-1:0]; //2-D version of Func Gen inputs
reg [2*N-2:0] occ; //occupied marker bits, one for each reservoir and "in" function
wire [n-1:0] thermoSum;
reg [N-2:0] thermo_occ; //occupied bits routed to thermoSum (either middle or lower 3 occ bits)

genvar i, j;

//Transform Func Gen's TT's to 2-D arrays
generate
for(i=0; i<N; i=i+1)
 begin: multidim
 always@*//(posedge CLK)//Pipeline function generator
 begin
 gen[i] <= gen_1[N*i+N-1:N*i];
 end
 end
endgenerate

always@* //MUX to select which source of functions to provide to CircPipe
 if(inFromRes)
 queue <= reswire[N*N-1:0];
 else
 queue <= gen_1;

73

//to output to the testbench
generate
for(i=0; i < 2*N-1; i=i+1)
 begin: ReswireOutput
 assign reswire[i*N+N-1:N*i] = res[i];
 end
endgenerate

//***
//Create select lines from shamt
generate
for(i=0; i<N; i=i+1)
 begin: in1D
 assign in_1[i*N+N-1:i*N] = in[i];
 end
endgenerate

generate
 for(i=0; i<2*N-2; i=i+1)
 begin: shamt_sel_gen
 if(i<N)
 begin
 for(j=0; j<N; j=j+1)
 begin: sham_sel_gen_inner1
 assign shamt_sel[i*N+j] = (shamt[N-j]==i && !inToPipe[j]) ? 1'b1 : 1'b0;
 end
 end

 else// if(i<2*N-2)
 begin
 for(j=0; j<2*N-1-i; j=j+1)
 begin: shamt_sel_gen_inner2
 assign shamt_sel[shamt_idx(i)+j] = (shamt[2*N-i-1-j]==i && !inToPipe[j+i-N+1]) ?
1'b1 : 1'b0;
 end
 end

74

 end
endgenerate
//***
//SECTION ONE: INPUT CONTROL AND RESERVOIR
//
assign inFromRes = occ[N-1];

//Select input from either func gen or reservoir
generate
for(i=0; i<N; i=i+1)
 begin: incoming
 always@*//(inFromRes, res[i], gen[i])
 begin: A
 in[i] <= inFromRes ? res[i] : gen[i];
 end
 end
endgenerate

//Calculate shamt from reservoir
always@* thermo_occ <= inFromRes ? occ[2*N-2:N] : occ[N-2:0];
thermo_adder #(n) thermo(thermo_occ,thermoSum);
always@* shamt[N] <= thermoSum;

//Calculate shamt for each incoming function T from the MUX
generate
for(i=0; i<N; i=i+1)
 begin:shiftCalc
 always@*//(shamt[i+1], inToPipe[N-1-i])
 begin: shamt_setup
 shamt[i] = shamt[i+1] + !inToPipe[N-1-i];
 end
 end
endgenerate

//set occ bits based on res contents
generate
for(i=0; i<2*N-1; i=i+1)

75

 begin: occ_connect
 always@*
 if(res[i]) occ[i] <= 1'b1;
 else occ[i] <= 1'b0;
 end
endgenerate

//Assign to resTemp (wires to the reservoir registers) the proper input, based on xfer table & inToPipe
// Accomplished through use of priority encoders
generate
 for(i=0; i<2*N-2; i=i+1)
 begin: Cases
 if(i<N)
 begin
 pri_enc #(.n(n),.s(N)) pi_1(in_1,shamt_sel[i*N+N-2:i*N],inToPipe[N-1:0],out[i]); //for i
>= N, pri_enc doesn't need entire 'in_1', so pruning will occur, shamt's are each 5 bits
 end
 else//(i<2*N-2)
 begin
 pri_enc #(.n(n),.s(2*N-1-i)) pi_2(in_1[N*N-1:(i-N+1)*N],shamt_sel[shamt_idx(i+1)-
1:shamt_idx(i)],inToPipe[N-1:i+1-N],out[i]); //parring should occur
 end
 end
endgenerate

//Constant function to generate indicies of shamt_1 in the generate elseif(i<2*N-2) section of pri_enc calls
function integer shamt_idx(input integer index);
 integer k;
 integer j;
 integer test; //added for XST
 begin
 k=1;
 shamt_idx=N*N;
 for(j=index; N<j; j=j-1)
 begin
 shamt_idx = shamt_idx + N - k;
 k=k+1;

76

 end
 end
endfunction
/*
generate
 for(i=0; i<2*N-1; i=i+1)
 begin: Pipe1res
 always@(posedge CLK)
 res[i] <= res_0p[i];
 end
endgenerate
*/

generate
 for(i=0; i<2*N-1; i=i+1)
 begin: reservoir
 if(i<N-1) begin
 always@(posedge CLK) res[i]/*res_0p[i]*/ = low_res(inFromRes,shamt_sel[i*N+N-
1:i*N],shamt[i],out[i],res[N+i],res[i]);
 end
 else if (i==N-1) begin
 always@(posedge CLK) res[i]/*res_0p[i]*/ = low_res(inFromRes,shamt_sel[i*N+N-
1:i*N],shamt[i],out[i],{N{1'b0}},res[i]);
 end
 else if (i<2*N-2)begin //(N-1 < i < 2*N-2)
 always@(posedge CLK) res[i]/*res_0p[i]*/ = mid_res(inFromRes,{i-
N+1{shamt_sel[shamt_idx(i+1)-1:shamt_idx(i)]}},out[i],res[i]);
 end
 else begin//i==2*N-2
 always@(posedge CLK) res[i]/*res_0p[2*N-2]*/ = if_func_Nbit(in[N-1],inToPipe[N-
1],inFromRes,shamt[1],res[2*N-2]);//probably don't need this, just control occ bit and always assign in[N-1]
to reswire [N-1]
 end
 end
endgenerate

function [N-1:0] low_res (input inFromRes,

77

 input [N-1:0] sel,
 input [N-1:0] shamt_i, //may not be needed if out is already zeros
 input [N-1:0] out,
 input [N-1:0] mid_res,
 input [N-1:0] res

);
 begin
 if(inFromRes && mid_res) begin //slide middle registers down
 low_res = mid_res;
 end
 else if(sel && out) begin //if sel and outwite are not zero
 low_res = out;
 end
 else low_res = inFromRes ? {N{1'b0}} : res;
 end
endfunction

function [N-1:0] mid_res (input inFromRes,
 input [N-1:0] sel, //couldn't figure out how to taper this width
 //input [N-1:0] shamt_i,
 input [N-1:0] out,
 input [N-1:0] res);
 begin
 if(sel && out) begin //if sel and outwite are not zero
 mid_res = out;
 end
 else mid_res = {N{1'b0}};
 end
endfunction

//This is a NOT-IF
function [N-1:0] if_func_Nbit(input [N-1:0] in,
 input inToPipe,
 input inFromRes,
 input [SHAMT_WIDTH:0] shamt_i,
 input prior_value

);

78

 begin
 if((3>=shamt_i) && inFromRes)
 begin
 if_func_Nbit = {N{1'b0}};
 end
 else if((shamt_i==2*N-2) && !inToPipe)
 begin
 if_func_Nbit = in;
 end
 else
 if_func_Nbit = prior_value;
 end
endfunction
endmodule

module pri_enc #(parameter n=2,s=4) (in, sel, inToPipe, out);
//--
// pri_enc - Verilog code to implement a priority encoder depending on a parameters, n and m.
//
//
// Created: March 15, 2010
// Last Modified: July 21, 2010
// Author: Chris Johnson
// Adapted from J.T. Butler's 1-bit priority encoder, modified for
// for busses and select lines in the Circular Pipeline Reservoir.
//
// Notes: None.
//
// Called by: CircPipeQue.v
//
// Sub-module calls: sel_module.v
// iff.v
//
//--
parameter N = 2**n;
//s is number of TT's being input (all MUX's get one TT, except the last one generated gets 2)

79

localparam SHAMT_WIDTH = n+1; //number of bits for shamt. n is large enough to hold the max transfer
distance

input [s*N-1:0] in; // in has up to N*N bits; all the applicable incoming functions
input [s-2:0] sel; // sel determines which OUT. Up to N-1 bits.
input [s-1:0] inToPipe; // signal indicating slot in circ pipe is vacant
output [N-1:0] out ; // OUT is main output of circuit.

wire [s*N-1:0] inC;
wire [(INNER_S(s)-3)*N+N-1:0] inner; // inner is a line interconnecting

genvar i;

//Constant function to provide INNER_S index
function integer INNER_S(input integer s);
 begin
 if(s>2)
 INNER_S = s;
 else
 INNER_S = 3;
 end
endfunction

//Bring TT in if it's rejected from the circular pipeline, else don't bring it in.
generate
 for(i=0; i<s; i=i+1)
 begin: ifinToPipe
 iff #(.N(N)) u5 (in[i*N+N-1:i*N],inToPipe[i],inC[i*N+N-1:i*N]);
 end
endgenerate

// Within the generate for loop below, if statements handle (3) special interconnection
// requirements, beginning, end, and middle.
generate
 for (i=0; i<s-1; i=i+1)
 begin:stage

80

 if (s == 2)
 assign inner[N-1:0] = inC[s*N-1:s*N-N];
 if (i == 0)
 sel_module #(.N(N)) u1 (inner[N-1:0], inC[N-1:0],
 sel[i], out);
 else if (i == (s-2))
 sel_module #(.N(N)) u2 (inC[s*N-1:s*N-N], inC[s*N-N-1:s*N-2*N], sel[s-2],
inner[(i-1)*N+N-1:(i-1)*N]); //in case of s=2, input 2 (inC) is repeated from MUX_0
 else
 sel_module #(.N(N)) u3 (inner[i*N+N-1:i*N], inC[i*N+N-1:i*N], sel[i],
inner[(i-1)*N+N-1:(i-1)*N]);
 end
endgenerate

endmodule

//--
// sel_module – Selector module. Basically, a MUX.
//
//
// Created: March 30, 2010
// Last Modified: July 21, 2010
// Author: Chris Johnson
//
//
// Notes: None.
//
// Called by: pri_enc.v
//
// Sub-module calls: None.
//
//--
//
module sel_module #(parameter N=4) (sel_0, sel_1, sel, out);

input [N-1:0] sel_0;

81

input [N-1:0] sel_1;
input sel;
output [N-1:0] out;
reg [N-1:0] out;

always @*
 begin
 if (sel == 1) out <= sel_1;
 else out <= sel_0;
 end
endmodule

//--
// iff – Simply and if statement, used for calls within a generate statement
//
// Created: March 30, 2010
// Last Modified: July 21, 2010
// Author: Chris Johnson
//
//
// Notes: None.
//
// Called by: iff.v
//
// Sub-module calls: None.
//
//--
//
module iff #(parameter N=4) (in,inToPipe,out);

input [N-1:0] in;
input inToPipe;
output [N-1:0] out;

reg [N-1:0] out;

always@*

82

begin
 if(!inToPipe)
 out <= in;
 else
 out <= {N{1'b0}};
end

endmodule

module thermo_adder #(parameter n = 2) (occup, sum);
//--
// thermo_adder - Verilog code to compute the sum of a 2^n bit input, occupp.
// occupp is the set of bits from the stages in the reservoir
// that indicate whether the stage is occuppied (1) or not (0).
// The bits from occupp is a thermometer. So, if occupp(i) = 1,
// then occupp(j) = 1 for all j < i. This results in a simpler
// circuit.
//
// Created: January 31, 2010
// Last Modified: 21 July 2010
// Author: Jon T. Butler
// Modified: Chris Johnson
//
// Called by: CircPipeQue.v
//
// Sub-module calls: None.
//
//--
//

localparam N = 2**n;

input [N-2:0] occup; // occupp has 2^n bits.
output reg [n-1:0] sum; // sum is an n-bit number indicating how many input bits are 1.

83

integer index, g;

always @*
 if(occup[N-2] == 1'b1)
 sum[n-1:0] = {{n{1'b1}}};
 else
 begin
 sum[n-1] = 1'b0;
 index = 2**(n-1)-1;
 for (g=n-1; g>=0; g = g-1)
 begin
 if(occup[index] == 1'b1)
 begin
 sum[g] = 1;
 index = index + 2**(g-1);
 end
 else
 begin
 sum[g] = 0;
 index = index - 2**(g-1);
 end
 end
 end

endmodule

84

B. SRC-6 IMPLEMENTATION FILES

1. main.c

///
/* */
/* main.c - C program to test an SRC-6E implementation of min.v */
/* */
/* Author: Chris Johnson */
/* Created: August 1, 2010 */
/* Last modified: September 3, 2010 */
/* */
/* Description: This program searches for bent functions using the */
/* circular pipeline with IFGs */
/* */
/* */
/***/

#include <map.h>
#include <stdlib.h>
#include <string.h>

void subr (int64_t*, int64_t*, int64_t*, int64_t*, int64_t*, int64_t*, int64_t*, int8_t*, int64_t*, int);

int main () {

 int i,j,mapnum=0;
 int64_t time_clk, r1, r2, cmin[32], invalc;
 int64_t *in0, *in1, *in2, *in3, *BENT, *REJECT, *STAGE_TT_out;
 int8_t *valid_out;

/* Allocate array of x values, in, and array of function values, out */
 in0 = (int64_t *) malloc (4096* sizeof (int64_t));
 in1 = (int64_t *) malloc (4096* sizeof (int64_t));

85

 in2 = (int64_t *) malloc (4096* sizeof (int64_t));
 in3 = (int64_t *) malloc (4096* sizeof (int64_t));
 BENT = (int64_t *) malloc (4096* sizeof (int64_t));
 STAGE_TT_out = (int64_t *) malloc (4096* sizeof (int64_t));

 for (i = 0; i < 4096; i++){
 in0[i] = 12816;//3210
 in1[i] = 30292;//7654
 in2[i] = 47768;//AB98
 in3[i] = 65244;//FEDC
 out[i] = 0;
 }

 map_allocate (1);

// Call subroutine subr.mc on the MAP.
 subr (in0, in1, in2, in3, &time_clk, REJECT, BENT, valid_out, STAGE_TT_out, mapnum);

/* Print out the number of clocks. */
 printf ("%lld clocks\n", time_clk);

/* Print out the output. */
 for (i=0; i<4096; i++){
 printf("BENT: %x \n",BENT[i]);
 if(out[i])
 printf("PartialStageTT: %x \n",out[i]);
 }

 map_free (1);

 exit(0);

 }

86

2. subr.mc

/***/
/* */
/* subr.mc - MAP C subroutine to cue TT's for ciruclear pipeline. */
/* */
/* Author: Chris Johnson */
/* Created: June 14, 2010 */
/* Last modified: September 3, 2010 */
/* */
/* Description: This program calls an SRC-6 macro that seives */
/* functions through a circular pipeline. */
/* */
/* */
/* */
/***/

#include <libmap.h>

void subr (int64_t in0[], int64_t in1[], int64_t in2[], int64_t in3[], int64_t *time, int64_t reject[],
int64_t bent[], int8_t valid_out, int64_t tt[], int mapnum) {

// Declare one OBM banks in SRC-6 to store...
 OBM_BANK_A (IN0, int64_t, 1024)
 OBM_BANK_B (BENT_o, int64_t, 4096)
 OBM_BANK_C (IN1, int64_t, 1024)
 OBM_BANK_D (IN2, int64_t, 1024)
 OBM_BANK_E (IN3, int64_t, 1024)
 OBM_BANK_F (TT_o, int64_t, 4096)

 int64_t my64bit_in0, my64bit_in1, my64bit_in2, my64bit_in3, REJECT, BENT, stage_TT_out, t0, t1;
 int8_t VALID_OUT; //only need 1 bit
 int i;

// Get values by DMAing FROM the CPU
 DMA_CPU (CM2OBM, IN0, MAP_OBM_stripe(1,"A"), in0, 1, 1024*sizeof(int64_t), 0);
 DMA_CPU (CM2OBM, IN1, MAP_OBM_stripe(1,"C"), in1, 1, 1024*sizeof(int64_t), 0);

87

 DMA_CPU (CM2OBM, IN2, MAP_OBM_stripe(1,"D"), in2, 1, 1024*sizeof(int64_t), 0);
 DMA_CPU (CM2OBM, IN3, MAP_OBM_stripe(1,"E"), in3, 1, 1024*sizeof(int64_t), 0);
 wait_DMA (0);

 read_timer(&t0);

 for (i = 0; i < 1024; i++){
// The my_operator macro call has 2 inputs, IN and INTOPIPE, and one output, OUT
 my64bit_in0 = IN0[i];
 my64bit_in1 = IN1[i];
 my64bit_in2 = IN2[i];
 my64bit_in3 = IN3[i];
 my_operator (my64bit_in0, my64bit_in1, my64bit_in2, my64bit_in3, REJECT, BENT, VALID_OUT,
stage_TT_out);
 BENT_o[i] = BENT;
 TT_o[i] = stage_TT_out;
 }

 read_timer(&t1);

 *time = (t1 - t0);

// Return values by DMAing TO the CPU
 DMA_CPU (OBM2CM, BENT_o, MAP_OBM_stripe(1,"B"), bent, 1, 4096*sizeof(int64_t), 0);
 DMA_CPU (OBM2CM, TT_o, MAP_OBM_stripe(1,"F"), tt, 1, 4096*sizeof(int64_t), 0);
 wait_DMA (0);
}

3. makefile

$Id: Makefile.template,v 1.13 2005/04/12 19:18:30 jls Exp $

Copyright 2003 SRC Computers, Inc. All Rights Reserved.

88

Manufactured in the United States of America.

SRC Computers, Inc.
4240 N Nevada Avenue
Colorado Springs, CO 80907
(v) (719) 262-0213
(f) (719) 262-0223

No permission has been granted to distribute this software
without the express permission of SRC Computers, Inc.

This program is distributed WITHOUT ANY WARRANTY OF ANY KIND.

User defines FILES, MAPFILES, and BIN here

FILES = main.c

MAPFILES = subr.mc

BIN = main

Multi chip info provided here
(Leave commented out if not used)

#PRIMARY = <primary file 1> <primary file 2>

#SECONDARY = <secondary file 1> <secondary file 2>

#CHIP2 = <file to compile to user chip 2>

#-----------------------------------
User defined directory of code routines

89

that are to be inlined
#------------------------------------

#INLINEDIR =

User defined macros info supplied here

(Leave commented out if not used)

MACROS = my_macro/CircPipe.v
MY_BLKBOX = my_macro/blk.v
MY_NGO_DIR = my_macro
MY_INFO = my_macro/info

Floating point macros selection

#FPMODE = SRC_IEEE_V1 # Default SRC version IEEE
#FPMODE = SRC_IEEE_V2 # Size reduced SRC IEEE with
 # special rounding mode

User supplied MCC and MFTN flags

MCCFLAGS = -v
MFTNFLAGS = -v

User supplied flags for C & Fortran compilers

CC = gcc # gcc for Intel cc for Gnu
FC = ifort # ifort for Intel f77 for Gnu
#LD = ifort -nofor_main # for mixed C and Fortran, main in C
#LD = ifort # for Fortran or C/Fortran mixed, main in Fortran
LD = gcc # for C codes

90

MY_CFLAGS =
MY_FFLAGS =
MY_LDFLAGS = # Flags to include libs if needed

VCS simulation settings
(Set as needed, otherwise just leave commented out)

#USEVCS = yes # YES or yes to use vcs instead of vcsi
#VCSDUMP = yes # YES or yes to generate vcd+ trace dump

MODELSIM simulation settings
(Set as needed, otherwise just leave commented out)

#USEMDL = yes # YES or yes to use modelsim instead of vcs/vcsi
#USEMDLGUI = yes # YES or yes to use modelsim GUI interface
#MDLDUMP = yes # YES or yes to generate vcd trace dump

No modifications are required below

MAKIN ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make
include $(MAKIN)

4. info

//***/
//* */
//* info - info file to specify the input and output of macro CircPipeCue */
//* */
//* Author: Chris Johnson */
//* Created: August 2, 2010 */
//* Last modified: September 3, 2010 */

91

//* */
//***/

BEGIN_DEF "my_operator" //Name used in .mc file to call macro.
 MACRO = "CircPipe"; //Macro name.
 STATEFUL = NO;
 EXTERNAL = NO;
 PIPELINED = YES;
 LATENCY = 0;

 INPUTS = 4:
 I0 = INT 64 BITS (FNCS0[64:0])
 I1 = INT 64 BITS (FNCS1[64:0])
 I2 = INT 64 BITS (FNCS2[64:0])
 I3 = INT 64 BITS (FNCS3[64:0])
 ;

 OUTPUTS = 4:
 O0 = INT 64 BITS (REJECT[63:0])
 O1 = INT 64 BITS (BENT[63:0])
 O2 = INT 8 BITS (valid_out[7:0]) //only need 1 bit
 O3 = INT 64 BITS (STAGE_TT_out[63:0])

 ;

 IN_SIGNAL: 1 BITS "CLK" = "CLOCK";
END_DEF

5. blk.v

/***/
/* */
/* blk.v - black-box file that specifies input and output */
/* */

92

/* Author: Chris Johnson */
/* Created: August 1, 2010 */
/* Last modified: September 3, 2010 */
/* */
/***/

module CircPipe (CLK,FNCS0,FNCS1,FNCS2,FNCS3,REJECT,BENT,valid_out,STAGE_TT_out);
 input CLK;
 input [63:0] FNCS0;
 input [63:0] FNCS1;
 input [63:0] FNCS2;
 input [63:0] FNCS3;
 output [63:0] REJECT;
 output [7:0] valid_out;
 output [63:0] stage_TT_out;
 output [63:0] BENT;
endmodule

93

LIST OF REFERENCES

[1] M. Matsui, “Linear cryptanalysis method for DES cipher,” in Advances in
Cryptology – EUROCRYPT, pp. 386–397, 1993.

[2] J. L. Shafer, S. W. Schneider, J. T. Butler, and P. Stanica, “Enumeration of bent
Boolean functions by reconfigurable computer,” in 18th IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines,
pp. 265–272, 2010.

[3] T. W. Cusick and Pantelimon Stanica, Cryptographic Boolean Functions and
Applications. San Diego: Elsevier, 2009.

[4] J. T. Butler, “On the speedup of sieves in the circular pipeline,” October 2009
Preprint.

[5] “Introduction to EC3820 and its Laboratory,” class notes for EC3820, Department
of Electrical and Computer Engineering, Naval Postgraduate School, Fall 2010.

[6] SRC Computers, Inc., “SRC Carte™ C Programming Environment v3.2 Guide,”
SRC–007–20, Colorado Springs, Colorado, November 2009.

[7] J. Hammes (private communication), August 2010.

94

THIS PAGE INTENTIONALLY LEFT BLANK

95

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Clark Robertson

Naval Postgraduate School
Monterey, California

4. Dr. John G. Harkins
National Security Agency

 Fort Meade, Maryland

5. Dr. David R. Podany

National Security Agency
Fort Meade, Maryland

6. Mr. David Caliga

SRC Computers
Colorado Springs, Colorado

7. Mr. Jon Huppenthal

SRC Computers
Colorado Springs, Colorado

8. Dr. Jeff Hammes

SRC Computers
Colorado Springs, Colorado

9. Dr. Jon T. Butler

Naval Postgraduate School
Monterey, California

10. Dr. Pantelimon Stanica

Naval Postgraduate School
 Monterey, California

96

11. Dr. Robert L. Herklotz
Program Manager, Information Operations and Security
Air Force Office of Scientific Research (AFOSR/RSL)
Arlington, Virginia

12. J. L. Shafer

US Naval Academy
 Annapolis, Maryland

13. S. W. Schneider

Naval Postgraduate School
 Monterey, California

14. N. B. Schafer

Naval Postgraduate School
Monterey, California

	I. INTRODUCTION
	A. LINEAR CRYPTANALYSIS
	B. ENUMERATION OF BENT BOOLEAN FUNCTIONS
	C. SPEEDUP USING A CIRCULAR PIPELINE
	D. THESIS GOALS
	E. THESIS ORGANIZATION

	II. BENT FUNCTION DISCOVERY USING SIEVE
	A. FUNCTIONS
	1. Definitions
	a. Boolean Functions
	b. Linear Functions
	c. Affine functions
	d. Nonlinearity (NLf)
	e. Bent Weight
	f. Bent Functions
	g. Throughput (T)

	B. PARALLEL SIEVE ARCHITECTURE
	1. XOR Operation
	2. Ones Count
	3. Minimum

	C. ADVANTAGES
	D. DISADVANTAGES

	III. CIRCULAR PIPELINE SIEVE ARCHITECTURE
	A. RESERVOIR
	B. CIRCULAR PIPELINE
	1. Data Flow and Control Logic Complexity Comparison

	C. FUNCTION GENERATOR
	1. With Reservoir
	2. Without Reservoir

	D. PERSISTENCE
	1. Worst-Case Scenarios
	a. With Reservoir
	b. Without Reservoir

	E. SUMMARY

	IV. IMPLEMENTATION
	A. VERILOG IMPLEMENTATION
	1. Reservoir
	a. Priority Encoders
	b. Adders
	c. Registers

	2. Circular Pipeline

	B. VERILOG DESIGN DEVELOPMENT AND TESTING
	C. SRC-6 IMPLEMENTATION
	1. Macro Characteristics
	2. Streaming Output
	3. CPU
	4. Subroutine and Macro Call
	5. Timing
	6. FPGA Resources

	D. SUMMARY

	V. RESULTS
	A. SPEEDUP
	B. RESOURCES
	C. RESERVOIR TRADEOFF
	D. SUMMARY

	VI. CONCLUSIONS AND RECOMMENDATIONS
	A. CONCLUSION
	B. RECOMMENDATIONS FOR FURTHER RESEARCH
	1. Multiple Output Stages
	2. Pipelined Reservoir
	3. Multiple FPGAs
	4. Function Generators

	APPENDIX. PROGRAMMING CODE
	A. VERILOG
	1. Circular Pipeline With Independent Function Generators
	2. Circular Pipeline With Reservoir

	B. SRC-6 IMPLEMENTATION FILES
	1. main.c
	2. subr.mc
	3. makefile
	4. info
	5. blk.v

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

